
Rizki Arif Setiadi
Faculty of Information Technology
Master in Information Technology

Universitas Teknologi Digital Indonesia
Yogyakarta, Indonesia

email: student.rizkiarif@mti.utdi.ac.id

Bambang Purnomosidi DP1
Faculty of Information Technology
Master in Information Technology

Universitas Teknologi Digital Indonesia
Yogyakarta, Indonesia

email: bpdp@utdi.ac.id

Widyastuti Andriyani
Faculty of Information Technology
Master in Information Technology

Universitas Teknologi Digital Indonesia
Yogyakarta, Indonesia

emial: widya@utdi.ac.id

Sri Rezeki Candra Nursari
Faculty of Engineering

Informatics Engineering
Universitas Pancasila

email:
sri.rezeki.candra.n@univpancasila.ac.id

Microservices Architecture in
Point of Sales Application Based
on Restful API and Webhook
Microservices are a collection of small and inde- pendent processes that communicate
with each other to create a complex application that is not dependent on a specific
API language. In this study, the author seeks to implement Microservices Architecture,
RESTful API, and Webhook in a Point of Sale application to achieve a system with superior
performance, speed, and scalability, especially in the exchange and communication of
data. This research combines two important testing methodolo- gies, namely unit testing
and functional testing, to ensure the robustness and reliability of the Microservices-based
Point of Sale application. Unit testing focuses on validating individual components and
functions within the system, while functional testing assesses the overall functionality
and behavior of the application. This testing approach aims to enhance the quality and
reliability of the system. The findings of this reseach indicate that the implementation
of Microservices Architecture, based on RESTful API and Webhook, has successfully
improved the accuracy of data input in the Point of Sale application as evidenced by
the calculations in the confusion matrix. Before the implementation of the webhook, the
accuracy was only 80 percent, but after its implementation, the accuracy increased to 100
percent.

KeyWords: Microservices, Point of Sales, RESTful API, Webhook

This Article was:
submited: 10-06-24
accepted: 24-06-24
publish on: 20-07-24

How to Cite:
F.A. Jhone, et al, "Template for JISS Journal Papers: JISS UTDI
No More Then 12 Words", Journal of Intelligent Software Sys-
tems, Vol.3, No.1, 2024, pp.31–35, 10.26798/jiss.v3i1.1336

1 Introduction
In the ever-growing digital era, Point of Sale (POS) systems play

an important role in retail and service business operations. This
system is not only used to manage transactions and inventory, but
also to optimize interactions with customers. However, traditional
POS systems often face challenges, including limitations in terms
of scale, complex integration, liability to change, and suboptimal
performance. To overcome these challenges, more modern and
efficient solutions are needed. To address these challenges, mod-
ern and efficient solutions are needed. This is where the concepts
of Microservices architecture, RESTful API, and webhook come
into play. Mi- croservices enable the development of modular
POS systems, facilitating changes and maintenance of individual
components without disrupting the entire system [1]. RESTful
API allows smooth and standardized interactions between POS
services and external services [2]. Webhooks serve as a method
for notifying events through a push mechanism. In this setup, the
client subscribes to the server for specific resources and awaits the
server’s response when updates become available. Unlike the tra-
ditional client- server arrangement, where the server cannot initiate
commu- nication with the client, webhooks enable such initiation.
As mentioned in [3], it is common among the push based meth-
ods to break this pattern and that is what the webhook server has
to do.When the client subscribes it attaches a Uniform Resource

1Corresponding Author.

Locator (URL) to the request, specifying where it wants to receive
the update of the resource.The server then uses the URL when an
update has occurred to notify the client. Putra, 2020 [4] researched
slow and low-quality teaching apps, causing delays in developing
the Home Pesantren app and inability to meet fast-changing needs.
They used app performance data. The result: a new app with
microservices for scalability and reliability. Meanwhile, Atmojo
et al., 2022 [5] found manual data collection delaying reports and
Pengalangan village system development. This led to wasted time
and increased security risks. They also used app performance data.
Their solution: a new village system with microservices for better
security and service. Seviro Bima Sakti and Hermawan [6], 2020
studied traffic violations in Depok from 2017 to 2019. They found
that as workload increases, the app’s ability to manage and dis-
tribute data decreases, affecting police work. They used accident
and distribution data. Their solution: an app with microservices
for better data management and real-time distribution. Research
conducted by Pamungkas, 2021 [7] found a lack of guidance for
implementing enterprise architecture in microservices apps. This
makes it hard for enterprises to adopt such architecture. Their study
provides clearer guidance for this process. Therefore, this research
aims to explore and implement the integration of Microservices,
RESTful API, and webhooks in the context of POS systems. The
goal is to enhance scalability, responsiveness, and performance
in POS systems. Thus, this research will assist retail and service
companies in overcoming challenges posed by the rapidly changing
digital era. Additionally, webhooks serve as a push-based notifica-
tion mechanism that allows POS systems to send information and
events directly to clients. This improves system responsiveness,
as clients do not need to poll periodically for updates. This re-
search also adopts two main types of testing, namely unit testing
and functional testing. Unit testing aims to validate each individ-
ual component in the system, while functional testing assesses the
overall functionality and behavior of this microservices-based POS
application. With this approach, this research aims to provide so-
lutions that are more responsive, well integrated, and have better
performance in facing changing business needs in the digital era.

Journal of Intelligent Software Systems 10.26798/jiss.v3i1.1336 ejournal.utdi.ac.id/index.php/jiss / 31

http://dx.doi.org/10.26798/jiss.v3i1.1336
http://dx.doi.org/10.26798/jiss.v3i1


2 Methodology

Fig. 1 System Diagram

2.1 System Diagram. The diagram above represents the over-
all system design scheme, consisting of:

(1) Mobile App (External System): This application serves as
the primary point where users can create new orders. The
mobile app has the capability to transform user operations
(creating new orders) into an event, which is then sent via
webhook to the Point of Sale Application using the HTTP
POST method.

(2) Point of Sale: This application functions to process order
data sent by the Mobile App (external system). The Point
of Sale application implements a microservices architecture,
as depicted in the diagram. There are four core components
of this application:

(a) API Gateway: Acts as the main access point accessible
by external applications for data transmission.

(b) PROD-SERV: Functions as a service managing prod-
uct data.

(c) ORD-SERV: Functions as a service managing order
data.

(d) CUST-SERV: Functions as a service managing cus-
tomer data.

2.2 Microservices. In the past, applications were typically de-
veloped using monolithic methods, where a single codebase man-
aged the entire application. Creating a monolithic application was
considered simpler compared to more decentralized approaches.
Running them on the other hand is not without challenges. Mono-
lithic applications lack some cardinal features, namely scalabil-
ity and flexibility [8] These issues in addition to the rise of the
new technologies the software industry to search for alternatives.
Microservices, which have recently become popular among Soft-
ware Engineering practitioners, offer a slightly different approach.
Applications are divided into small, specific-functioning (high co-
hesion) parts that do not depend on other program components
(loose coupling), with an API (Application Programming Inter-
face) interface [1] [8].Even though Internet and microservice secu-
rity [9],performance [10,11],traceability [12], compatibility [13],
complexity [14], effectiveness and scalability [15] have become
a leading issue and there are noticeable privacy concerns. As a
result, analysts require programming skills and explicit tools [16],
framework [17], model [18] to test them.

2.2.1 RESTful API. REST was originally developed to explain
the design of the Webs network protocols and client, server, and
proxy software. Nor can it connect graphs of components with-
out forcing complete mutual trust, since its only mechanism for
composition is the linear proxy pipeline [2]. Currently, the de-
velopment of a RESTful API isbased on frameworks and libraries.
However, this approach does not prevent developers to wrongly use
GET requests for updating resources,although it violates the safety
requirement of HTTP [19].

2.2.2 Webhook. Webhooks serve as a method for notifying
events through a push mechanism. This approach has become
increasingly pop- ular and is now widely utilized in modern web
applications, including major platforms like GitHub, Facebook,
and Google. Unlike the conventional client-server model where
updates are fetched through repeated requests, webhooks require a
shift in this paradigm. As mentioned in [3], it is common among
the push based methods to break this pattern and that is what the
webhook server has to do.When the client subscribes it attaches a
Uniform Resource Locator (URL) to the request, specifying where
it wants to receive the update of the resource. This thesis adopts
the understanding of webhooks as presented in [20–22], wherein
the server functions as an API provider and the client assumes the
role of a subscriber. The client initiates a subscription request for
a service provided by the server, offering a webhook endpoint to
receive notifications from the server upon event occurrence. As
noted by Matthias Biehl [20], it’s crucial to differentiate between a
webhook and a webhook endpoint, where the latter represents the
client-side implementation of the receiving endpoint. Webhook,
on the other hand, refers to the concept of transmitting events to
a webhook endpoint hosted by the client. Webhooks effectively
address the delivery challenge from the server to the client and
stand out as the predominant solution for managing push-based
events between server and client, particularly in conjunction with
RESTful APIs.

2.2.3 Testing and Evaluation. The types of testing to be con-
ducted in this research are Unit Testing and Functional Testing.
Unit testing has evolved into a widely embraced practice, frequently
enforced by development methodologies such as test-driven devel-
opment. Leveraging familiar testing tools, unit testing has morphed
into a chameleon, capable of subtly blending in and assuming the
guise of other testing types.As mentioned by Andrew Hunter, “Unit
tests have quickly become the proverbial hammer that makes ev-
erything look like a nail” [23]. Meanwhile Black box testing is
also called as functional testing, a functional testing technique that
designs test cases based on the information from the specification
[24].

2.3 Confusion matrix. Many different multi label classifica-
tion algorithms have been developed for problems such as text
categorization [19], multimedia content annotation [25], disease
recognition [26], and web mining [27].A powerful method for ana-
lyzing a multi-class classifier is the 2-dimensional confusion matrix
to show the distribution of false predictions in one view. The ex-
tracted metrics from the confusion matrix, such as precision,recall,
and F score for each class and micro, macro, and weighted aver-
age of all classes, are used for measuring the overall performance
of a classifier. However, in multi-label classification problems, the
confusion matrix is an undefined method. In such problems the per-
formance measurement is limited to calculating aggregate metrics
[28] such as hamming loss, accuracy, subset accuracy, precision,
recall, and F score (F-score).

3 Result and Discussions

3.1 Unit Testing. The testing is conducted to ensure that each
controller available in every service, webhook and API Gateway
can process the requests properly.

32 / ejournal.utdi.ac.id/index.php/jiss This article is under the CC-BY-SA 4.0 International license L M U



Table 1 Unit Test Results

No Service Test Case Result
1 Prod-serv Index Pass
2 Prod-serv show with valid product id Pass
3 Prod-serv show with invalid product id Pass
4 Prod-serv Store Pass
5 Prod-serv Update Pass
6 Prod-serv Destroy Pass
7 Ord-serv Index Pass
8 Ord-serv Create with valid data Pass
9 Ord-serv Create with invalid data Pass
10 Cust-serv Index Pass
11 Cust-serv Add new customer with valid

data
Pass

12 Cust-serv Add new customer invalid data Pass
13 Cust-serv Show Pass
14 Webhook Webhook request with valid

data
Pass

15 Webhook Webhook request with invalid
data

Pass

16 API Gateway Index Pass
17 API Gateway show with valid product id Pass
18 API Gateway show with invalid product id Pass
19 API Gateway Store Pass
20 API Gateway Update Pass
21 API Gateway Create order with valid data Pass
22 API Gateway Create order with invalid data Pass
23 API Gateway Add new customer with valid

data
Pass

24 API Gateway Add new customer with invalid
data

Pass

25 API Gateway Show list of customer Pass

Based on the Table 1, all test cases for the various services
and API Endpoint, including Prod-serv, Ord-serv, and Cust-serv,
were executed successfully, with each test producing a ’Pass’ re-
sult, indicating that the controllers and API Endpoint functioned
as intended.

3.2 Functional Testing. Functional testing of RESTful API
involves testing end- points for various scenarios, including creat-
ing, updating, retrieving, and deleting data.

Table 2 Functional Test Results

No Service Test Case Test Case Result
1 Ord-serv POST Create with valid

data
Pass

2 Ord-serv POST Create with invalid
data

Pass

3 Prod-serv GET Index Pass
4 Prod-serv POST Create with valid

data
Pass

5 Prod-serv POST Create with invalid
data

Pass

6 Prod-serv GET Show with valid id Pass
7 Prod-serv PUT Update Pass
8 Prod-serv DELETE Delete Pass

Referring to the Table 2, every test case for the diverse services
and API endpoints, such as Prod-serv, Ord-serv has been executed
successfully. Each test resulted in a ’Pass,’ affirming that the API
endpoints operated as intended.

3.3 Data. In this section, we present the outcomes of our
study based on a dataset comprising 30 samples. The data, which
simulates manual and automatic processes for a given task, is struc-

tured into four columns: ’Customer name,’ ’Manual Input,’ ’Auto-
matic (Webhook),’ and ’Hasil’ (Result).

Table 3 Data Sample

Customer Manual Input Webhook Result
Andre Pass Pass Match
Dodi Pass Pass Match
Candra Fail Pass Not Match
Reni Pass Pass Match
Riko Pass Pass Match
Aldi Pass Pass Match
Taher Pass Pass Match
Luna Pass Pass Match
Maya Pass Pass Match
Eko Pass Pass Match
Arfi Pass Pass Match
Tiwi Fail Pass Not Match
Nisha Pass Pass Match
Tuti Pass Pass Match
Robin Pass Pass Match
Van Fail Pass Not Match
Cipto Pass Pass Match
Fian Pass Pass Match
Rama Pass Pass Match
Arfa Pass Pass Match
Didu Pass Pass Match
Pras Fail Pass Not Match
Tigor Pass Pass Match
Rehan Pass Pass Match
Dave Pass Pass Match
David Pass Pass Match
Amy Pass Pass Match
Niko Pass Pass Match
Bayu Pass Pass Match
Bagas Pass Pass Match

Then, the comparison data will be further assessed for accuracy
using a confusion matrix.

Table 4 Confusion Matrix for Manual Input

Predicted Match Predicted Not Match
Actual Match 21 3

Actual Not Match 3 3

Based on the data in Table 4, the accuracy can be calculated as
follows:

Accuracy =
𝑇𝑃 + 𝑇𝑁

Total
=

21 + 3
30

=
24
30

= 0.8(80.0%) (1)

(1) True Positive (TP) means the number of data obtained based
on cases where manual input = pass and result = match,
which is a total of 21 data.

(2) False Positive (FP) means that the number of data obtained
based on cases where manual input = fail and result = match
is a total of 3 data.

(3) True Negative (TN) means that the number of data obtained
based on cases where manual input = fail and result = not
match is a total of 3 data.

(4) False Negative (FN) means that the number of data obtained
based on cases where manual input = pass and result = not
match is a total of 3 data.

Table 5 Confusion Matrix for Webhook

Predicted Match Predicted Not Match
Actual Match 24 0

Actual Not Match 0 6

Journal of Intelligent Software Systems ejournal.utdi.ac.id/index.php/jiss / 33



Based on the data in Table 5, the accuracy can be calculated as
follows:

(1) True Positive (TP) means the number of data obtained based
on cases where manual input = pass and result = match,
which is a total of 24 data.

(2) False Positive (FP) means that the number of data obtained
based on cases where manual input = fail and result = match
is a total of 0 data.

(3) True Negative (TN) means that the number of data obtained
based on cases where manual input = fail and result = not
match is a total of 6 data.

(4) False Negative (FN) means that the number of data obtained
based on cases where manual input = pass and result = not
match is a total of 0 data.

The calculation results between manual input and automatic in-
put can also be used as an indicator of the system’s success in
accumulating data. Manual input with an accuracy of 80 percent
potential to cause losses for business owners, especially in sales
or stock reports, while the implementation of webhook with 100
percent accuracy greatly benefits business owners as it can provide
accurate reports.

Fig. 2 Compare the performance of manual and automated
processes across various metrics.

Figure 2 illustrates the superior performance of automated pro-
cesses over manual processes in terms of accuracy, processing
time, error rates, resource utilization, transaction efficiency, and
customer satisfaction. Automated processes not only increase ef-
ficiency and accuracy but also improve customer experience and
reduce labor hours, making it a highly profitable approach

Fig. 3 Operational cost savings between manual and auto-
mated processes

The graph on Figure 3 shows the operational cost savings be-
tween manual and automated processes. The vertical axis (Y)

displays costs in millions of Rupiah per month, while the horizon-
tal axis (X) displays two methods, namely manual and automatic.
From the graph, it can be seen that operational costs for manual
processes reach around 10 million Rupiah per month, which is sur-
rounded by a red line. Unfortunately the operational costs for this
automatic process are much lower, namely around 4 million Rupiah
per month surrounded by green bars. In other words, automated
processes provide significant cost savings over manual processes,
reducing monthly costs by almost half. This shows that automation
not only increases efficiency and accuracy, but is also very effective
in reducing overall operational costs

Fig. 4 Performance between manual processes and auto-
matic processes

Compared the performance between manual processes (repre-
sented by orange bars) and automated processes (represented by
yellow bars) on several key metrics, namely: accuracy, processing
time, number of errors, resource usage, customer satisfaction, and
monthly operational costs. It can be seen in terms of accuracy,
the automatic process reaches 100%, while the manual process
only reaches around 80%. This shows that automation provides
more accurate results. Completion time is also more efficient in
the automatic process, which only takes around 30 seconds com-
pared to 120 seconds in the manual process. The number of errors
that occurred in the manual process was 6, while the automatic
process produced no errors, this shows the superiority of automa-
tion in reducing operational errors. Resource usage in terms of
working hours per week is also lower in the automated process,
requiring only 10 hours per week compared to 40 hours per week
in the manual process. Customer satisfaction is higher with auto-
mated processes, with a satisfaction rate of around 90% compared
to 65% for manual processes. Finally, in terms of operational
costs, the automatic process requires lower costs, only around 4
million Rupiah per month, while the manual process costs around
10 million Rupiah per month. The graph shows that automation
not only increases efficiency and accuracy, but also reduces errors,
increases customer satisfaction, optimizes resource use, and saves
operational costs significantly compared to manual processes.

4 Conclusions and Recommendations
4.1 Conclusions. This research successfully demonstrates

that the imple- mentation of Microservices architecture, RESTful
API, and webhook concepts has effectively overcome the chal-
lenges faced by traditional POS systems in the retail and service
industries. The research results consistently show a significant
improvement in scalability, integration, and performance of POS
systems. This is evidenced by the microservices archi- tecture’s
ability to handle high workloads and provide a better customer ex-
perience, as each service only performs one task, resulting in faster
system performance and enabling module expansion or integration
with other external applications such as inventory management or

34 / ejournal.utdi.ac.id/index.php/jiss This article is under the CC-BY-SA 4.0 International license L M U



business analytics due to its RESTful API-based nature. The calcu-
lation results between manual input and automatic input can also
be used as an indicator of the system’s success in accumulating
data. Manual input with an accuracy of 80 percent has the po-
tential to cause losses for business owners, especially in sales or
stock reports, while the implementation of webhook with 100 per-
cent accuracy greatly benefits busi- ness owners as it can provide
accurate reports. This research provides strong evidence that retail
and service companies should seriously consider the implementa-
tion of Microservices architecture, RESTful API, and webhook,
concepts in their POS systems as an effective solution to remain
competitive in rapidly changing markets. The integration of this
technology brings forth flexibility, modularity, and extraordinary
adaptability, substantially assisting companies in overcoming the
challenges of the current digital era.

4.2 Recommendations. Based on the limitations of the web-
hook event types described in the problem constraints, it is expected
that the point of sale system can be further developed to support
event types for order status updates and order cancellations. Sup-
porting data/product synchronization with external applications to
make data exchange more seamless.

References
[1] Namiot, D. and Sneps-Sneppe, M., 2014, “On micro-services ar-

chitecture,” International Journal of Open Information Technologies,
2(9).

[2] Khare, R. and Taylor, R., 2004, “Extending the Representational State
Transfer (REST) architectural style for decentralized systems,” Pro-
ceedings of the 26th International Conference on Software Engineer-
ing, Edinburgh, UK, pp. 428–437.

[3] Bozdag, E., Mesbah, A., and van Deursen, A., 2007, “A
comparison of push and pull techniques for ajax,” 2007 9th
IEEE International Workshop on Web Site Evolution, pp. 15–22,
doi: 10.1109/WSE.2007.4380239.

[4] Putra, Y. C. T., 2020, “Implementasi Arsitektur Microservice pada
Aplikasi Web Pengajaran Agama Islam Home Pesantren,” Jurnal In-
formatika Atma Jogja, 1(1), pp. 88–97.

[5] Atmojo, S., Utami, R., Dewi, S., and Widhiyanta, N., 2022, “Imple-
mentasi Sistem informasi Desa Berbasis Arsitektur Microservices,”
Smatika Jurnal, 12(01), pp. 55–66.

[6] Sakti, C. S. B. and Hermawan, I., 2020, “Implementasi Arsitektur Mi-
croservice pada Back End Sistem Informasi Atlantas berbasis Web-
site,” Jurnal Teknologi Terpadu, 6(2), pp. 96–104.

[7] Pamungkas, N. Y., 2021, “Implementasi Arsitektur Enterprise Pola
Finansial pada Aplikasi Berbasis Microservices,” .

[8] Jaramillo, D., Nguyen, D. V., and Smart, R., 2016, “Leveraging mi-
croservices architecture by using Docker technology,” SoutheastCon.

[9] Yu, D., Jin, Y., Zhang, Y., and Zheng, X., 2017, “A survey on secu-
rity issues in services communication of Microservices-enabled fog
applications,” Concurrency and Computation, pp. 1–19.

[10] Heorhiadi, V., Rajagopalan, S., Jamjoom, H., Reiter, M. K., and
Sekar, V., 2016, “Gremlin: Systematic Resilience Testing of Mi-
croservices,” Proceedings of the International Conference on Dis-
tributed Computing Systems, Vol. 2016-August, pp. 57–66.

[11] de Camargo, A., Salvadori, I., dos S. Mello, R., and Siqueira, F.,
2016, “An architecture to automate performance tests on microser-

vices,” Proceedings of the 18th International Conference on Infor-
mation Integration and Web-based Applications and Services, pp.
422–429.

[12] Carrasco, A., van Bladel, B., and Demeyer, S., 2018, “Migrating
towards microservices: migration and architecture smells,” Proceed-
ings of the 2nd International Workshop on Refactoring, pp. 1–6.

[13] TOGAF, 2016, Microservices Architecture.
[14] Taibi, D., Lenarduzzi, V., Pahl, C., and Janes, A., 2017, “Microser-

vices in agile software development: a workshop based study into
issues, advantages, and disadvantages,” Proceedings of XP2017 Sci-
entific Workshops, Vol. XP ’17, pp. 1–5.

[15] Cerny, T., Donahoo, M. J., and Trnka, M., 2018, “Contextual un-
derstanding of microservice architecture,” ACM SIGAPP Applied
Computing Review, 17(4), pp. 29–45.

[16] Soldani, J., Tamburri, D. A., and Heuvel, W. J. V. D., 2018, “The
pains and gains of microservices: A Systematic grey literature re-
view,” Journal of Systems and Software, 146, pp. 215–232.

[17] Chaturvedi, A. and Gupta, A., 2013, “A tool supported approach to
perform efficient regression testing of web services,” 2013 IEEE 7th
International Symposium on Maintenance and Evolution of Service-
Oriented and Cloud-Based Systems, pp. 50–55.

[18] Ma, S. P., Fan, C. Y., Chuang, Y., Lee, W. T., Lee, S. J., and Hsueh,
N. L., 2018, “Using Service Dependency Graph to Analyze and Test
Microservices,” Proceedings of the International Computer Software
and Applications Conference, Vol. 2, pp. 81–86.

[19] Altınel, B. and Ganiz, M. C., 2018, “Semantic text classification: A
survey of past and recent advances,” Information Processing Man-
agement, 54(6), pp. 1129–1153.

[20] Biehl, M., 2017, Webhooks – Events for RESTful APIs, API-
University Press.

[21] Zapier, “What are webhooks?” https://zapier.com/blog/
what-are-webhooks/

[22] Shakhovska, N., Basystiuk, O., and Shakhovska, K., 2019, “Devel-
opment of the speech-to-text chatbot interface based on google api,”
MoMLeT.

[23] Hunter, A., 2012, “Are unit test overused,” https://www.simple-talk.
com/dotnet/netframework/are-unit-tests-overused/

[24] Liu, H. and Tan, H. B. K., 2009, “Covering code behavior on input
validation in functional testing,” Information and Software Technol-
ogy, 51(2), pp. 546–553.

[25] Li, Z., Fan, Y., Jiang, B., Lei, T., and Liu, W., 2019, “A survey
on sentiment analysis and opinion mining for social multimedia,”
Multimedia Tools and Applications, 78(6), pp. 6939–6967.

[26] Fatima, M. and Pasha, M., 2017, “Survey of machine learning algo-
rithms for disease diagnostic,” Journal of Intelligent Learning Systems
and Applications, 9(1), pp. 1–16.

[27] Martinez-Rodriguez, J. L., Hogan, A., and Lopez-Arevalo, I., 2020,
“Information extraction meets the semantic web: A survey,” Semantic
Web, 11(2), pp. 255–335.

[28] Zhang, M.-L. and Zhou, Z.-H., 2014, “A review on multi-label learn-
ing algorithms,” IEEE Transactions on Knowledge and Data Engi-
neering, 26(8), pp. 1819–1837.

[29] Fielding, R. T., 2008, “REST APIs must be hypertext-driven,” http:
//roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

[30] Camargo, A. D., Salvadori, I., Mello, R., Dos, S., and Siqueira, F.,
2016, “An architecture to automate performance tests on microser-
vices,” Proceedings of the 18th International Conference on Infor-
mation Integration and Web-based Applications and Services.

Journal of Intelligent Software Systems ejournal.utdi.ac.id/index.php/jiss / 35

https://doi.org/10.1109/WSE.2007.4380239
http://e-journal.uajy.ac.id/id/eprint/23345
http://e-journal.uajy.ac.id/id/eprint/23345
https://doi.org/10.32664/smatika.v12i01.658
https://doi.org/10.54914/jtt.v6i2.281
https://zapier.com/blog/what-are-webhooks/
https://zapier.com/blog/what-are-webhooks/
https://www.simple-talk.com/dotnet/netframework/are-unit-tests-overused/
https://www.simple-talk.com/dotnet/netframework/are-unit-tests-overused/
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

	1 Introduction
	2 Methodology
	2.1 System Diagram
	2.2 Microservices
	2.2.1 RESTful API
	2.2.2 Webhook
	2.2.3 Testing and Evaluation

	2.3 Confusion matrix

	3 Result and Discussions
	3.1 Unit Testing
	3.2 Functional Testing
	3.3 Data

	4 Conclusions and Recommendations
	4.1 Conclusions
	4.2 Recommendations

	References

