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Abstract: In making reports or dashboards from operational data, problems often occur in the query
process with low speed in responding to an output, causing the server to experience overload.
This condition often occurs in companies or higher education organizations in managing aca-
demic data. This condition can be improved by optimizing the database server by integrating
relational databases with column-oriented databases to speed up query responses and save
development costs. Based on the experiments that had been carried out, column-oriented
has succeeded in optimizing with a significant difference in query execution time and the
server does not crash.
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1. Introduction

In a modern organization, data are a very important asset. Data are used by top man-

agement to support logical decision-making, which decisions can be accepted by many parties

by prioritizing considerations based on data and conditions in the field. Every organization

has an information system that produces a structured relational database management system

(RDBMS) such as MySQL [1] or MariaDB [2].

Unfortunately, as the number of data increases, when creating analytics or dashboards, the

queries used to retrieve data from the database, often run very slowly. The process of data

aggregation on the amount of data that can reach millions causes RDBMS such as MySQL to

be less optimal [3].

In big data, data volume is a challenge for small-medium enterprise (SME) companies be-

cause they do not have the funds to upgrade the latest version of the server to improve database

performance on their commodity servers [4].

Furthermore, changing the architecture as a whole and changing the source code side of

the application might also take a lot of time and money. Thus, it is necessary to optimize the

existing resources, in this case on the database server-side.

This study is a case study on a consulting firm and university software service provider

who is currently conducting a study on the optimization of report generation. The researchers

proposed a solution to the optimization problem by experimenting with the use of column-

oriented databases by choosing one of the Column-oriented database brands, namely ClickHouse,

which results are expected to be a solution for companies or industries.

The contributions made by this study include as follows; concurrent use of column-oriented

relational databases, the use of commodity servers with the aim that the results of the study

can also be utilized by SMEs, the use of Speedup metrics and independent t-test statistical tests

to determine the significance of resource usage.

Section 2 discusses the background of column-oriented capabilities and discusses several

previous related studies. Section 3 presents the method and experimental preparations such as

hardware, software, and queries used. Section 4 presents the data in the form of graphs and

tables of the results of the experimental analysis, including things that the researcher discusses

based on the results of the analysis. Section 5 draws conclusions.
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2. Literature Review

2.1. Column-oriented Database

Column-oriented or commonly called Columnar database is a form of sorting data in a

relational database which is generally in the form of rows but the form of columns because

columns are the smallest and lowest instance of data [5]. Column-oriented objectives are to

speed up reading and sorting on storage because it minimizes random access, reduces disk Input-

Output (I/O), and processes queries using vectorized execution [6, 7]. Vectorized execution query

is an execution model that can be represented as small single-dimensional arrays (vectors), easily

accessible for CPUs, and can also speed up heavy query processing in big data frameworks such

as Online Analytical Processing (OLAP) which has a lot of aggregate commands on big data

[8–10] The role of parallel processing in OLAP is a good solution to improve performance [11].

These conditions suggest that the column-oriented databases currently also play a role in the

development of Big Data [12].

2.2. ClickHouse

Currently, there are many column-oriented DBMS products, one of which is currently pop-

ular is ClickHouse. This open-source product is made by Yandex Russia. ClickHouse has a

familiar SQL dialect feature and can integrate with MySQL, making it easier for developers to

structure queries. In terms of performance, several studies have stated that ClickHouse is able

to process quickly on ATLAS [13] and modern analytical databases [14].

A previous study conducted by Felipe de Moura et al. [15] tried to shorten query execution

time on financial report generation using the Hadoop ecosystem with Hbase as column-oriented

DBMS. The data in the relational DBMS were transferred to Hbase and then the query execution

was carried out. The result was that the query execution time for making reports is shorter.

Other studies on column-oriented databases were also conducted by Alex Skidanov et al., Matei-

Eugen Vasile et al., Tianqi Zheng et al. [7, 13, 14] using memSQL and ClickHouse for real-time

data analytics and concluded that column-oriented databases are reliable because real-time

analytics requires query execution speed. Meanwhile, another study conducted by Czerepicki

[16] to shorten the time of data analysis of electric vehicles in calculating power consumption

and the chosen route, which will affect energy savings in the electric vehicle.

3. Methods

Speeding up the response time of the relational database by combining other database

models was conducted by Vyawahare et al. [17], which is to do a hybrid database approach
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between relational databases integrated with graph databases to improve the performance of

analytical queries. In this experiment, the researchers did not change the database that had

been used and did not add hardware but ran a relational DBMS (MySQL) and column-oriented

database (ClickHouse) on the same server. MySQL is a data source because it stores operational

data and is integrated with ClickHouse, when it will process report generation, the query will

be run on ClickHouse. Further detail on the experiment is visualized in Figure 1.

Figure 1: MySQL and ClickHouse in one server

Testing using hardware specifications was not quite high, since it adjusted the condition of

the server owned by the client or customer. In this study, the researchers used 4 GB RAM, 50

GB storage disk, and Ubuntu OS 20.04.

3.1. MySQL and ClickHouse

MySQL versions used version 8.0 with the following tunning configuration:

sort_buffer_size=1M,read_rnd_buffer_size=1M,

innodb_buffer_pool_size=2G, innodb_log_file_size=128M,

innodb_buffer_pool_instances=3, join_buffer_size=512K

ClickHouse version used 20.9 stable. Without tuning and the type of database engine used

was mysql. This type of database engine can remote database from Clickhouse to MySQL in

real-time to synchronize the data.

3.2. Data and Query

The data used were the academic information system data of one of the customer’s colleges.

However, in this experiment, only 4 tables were used and the maximum number of data was
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7 million records. This table was the core table used to create reports. Meanwhile, the query

consisted of 4 types the query in Figure 2, is the highest query and takes a long time to execute.

Figure 2: Four types of queries used for testing

3.3. Query execution and logging

Query execution was divided into 2 types, the first was the first run where a query was

executed the first time or had never been executed before, to avoid the use of cache. The second

was the next run, a query executed after the first run had been executed or a query that had

been executed before. During the execution, data such as execution time, CPU usage, and

RAM usage were recorded using system activity report (sar) and pidstat tools. Each query was

executed five times and then the average was taken. The average calculation used the arithmetic

mean with the following notation:

A =
1

n

n∑
i=1

a1 (1)

Where A is the arithmetic mean, the a1 is the i-th data value and n is the number of data.
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4. Result and Analysis

MySQL Query Execution

In order to measure the optimization level, it is necessary to execute the query using MySQL

for comparison before and after optimization. The results of the query execution are presented

in Table 1.

Table 1: MySQL query execution time

Query First run (sec) Next run (sec)

query 1 125.08 25.64
query 2 131.86 60.57
query 3 126.91 0.84
query 4 351.06 267.72

During the execution of query 3, there was a failure in the execution process. MySQL failed

to complete the query and displayed an error message.

(a) First run query execution CPU Usage (b) Next run query execution CPU Usage

Figure 3: query execution CPU Usage

Execution of Query First Run in MySQL did not take too long to reach peak CPU usage

as visualized in Figure 3a. In the Next Run execution, peak CPU usage was more frequent in

query 2, other queries averaged 50% as in Figure 3b.
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(a) First run query execution RAM Usage (b) Next run query execution RAM Usage

Figure 4: Query execution RAM Usage

RAM usage in First Run execution tends to be higher than the next run execution, while

query4 has similarities in RAM usage and query execution time as in Figure 4a and Figure 4b.

Figure 5: CPU usage per core

The CPU Core as shown in Figure 5, visualizes the alternate between core1 and core2 when

executing the query.

ClickHouse Query Execution

When executing the query used to generate reports on ClickHouse, it must first be ensured

that ClickHouse is connected to MySQL. The results of the execution are presented in Table 2.
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Table 2: ClickHouse query execution time

Query First run (sec) Next run (sec)

query 1 50.150 22.74
query 2 54.346 14.138
query 3 87.274 15.835
query 4 115.561 13.773

The first query shows the First run at a speed of 50.150 with the Next run at a speed of

22.74. Meanwhile, the second, third, and fourth queries experienced an increase in the speed of

the First run (Query 2, 3, and 4) and a decrease in the Next run (Query 3 and 4)

(a) First run query execution CPU Usage

with ClickHouse

(b) Next run query execution CPU Usage

with ClickHouse

Figure 6: Query execution CPU Usage with ClickHouse

CPU usage on First Run ClickHouse queries tends to be high, especially on heavy queries

and requires a long execution time as shown in Figure 6a. In the execution of the Next Run

Query, almost all queries use maximum CPU resources as shown in Figure 6b.
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(a) First run query execution RAM Usage

with ClickHouse

(b) Next run query execution RAM Usage

with ClickHouse

Figure 7: Query execution RAM Usage with ClickHouse

RAM usage in the First Run execution seems to increase while the Next Run execution tends

to ramp up and does not reach the peak resource usage as shown in Figure 7a and Figure 7b.

ClickHouse execution always consumes all the cores on the CPU at the same time, as in

Figure 8.

Figure 8: CPU usage per core with ClickHouse

The difference in query execution time between MySQL and ClickHouse on the first ex-

ecution appears to have a difference as shown in Figure 9a. MySQL takes longer to execute

the query. Meanwhile, in the execution of the next run, the difference is quite striking as in

Figure 9b.
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(a) First run query execution time (b) Next run query execution time

Figure 9: Query execution time

ClickHouse is much faster than MySQL except for query3, ClickHouse is slightly slower

than MySQL. Tests were carried out to find out the significant average difference in resource

usage between when only using MySQL compared when it was optimized with ClickHouse. Both

query execution first run and next run used an independent t-test with mathematical notation

as follows:

t =
X1−X2

n

√
(n1−1)s12
n1+n2−2

(
1
n1 + 1

n2

) (2)

Where Xi= average score/value of group i, = is the number of group i, S12= variance score of

group i. The significance level (α) = 0.05 was used. The results are shown in Table 3, indicating

that the value of sig (2-tailed) < α means that the use of RAM, CPU and RAM+CPU between

MySQL alone compared to after using ClickHouse has a significant difference. As seen in Table 3,

almost every query execution experienced a significant reduction in time, even up to 94.86%,

but did not experience a reduction in query 3 because, without ClickHouse, MySQL was faster.

Furthermore, the calculation of the increase in speed (speedup) in parallel) computing compared

to serial computing because using ClickHouse, queries are executed in parallel.
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Table 3: Execution time comparisons

Query Exec. Query MySQL (sec) ClickHouse (sec) Time reduction (%) Speedup

First run

query 1 125.08 50.15 59.91% 2.49
query 2 131.86 54.346 58.79% 2.43
query 3 126.91 87.274 31.23% 1.45
query 4 351.06 115.561 67.08% 3.04

Next run

query 1 25.64 22.74 11.31% 1.13
query 2 60.57 14.138 76.66% 4.28
query 3 0.84 15.835 - 0.05
query 4 267.72 13.773 94.86% 19.44

Speedup calculation is formulated as follows:

Sp =
T1

Tp
(3)

Where Sp= Speedup, T1 = serial computation execution time, Tp = parallel computation execu-

tion time using as many P (processor). Therefore, the Speedup column can be seen how many

times faster parallel execution Tpis compared to serial T1.

From the experimental results, it is known that the use of MySQL in report generation

takes a long time as described in Table 1. Only query 3 can be executed quickly. Compared to

ClickHouse, it can complete in a faster time, with the average time as in Table 2. Meanwhile,

the comparison can be seen in Figure 9a and Figure 9b. The results are striking in query 4.

The time reduction is more than 253 seconds or 9 times faster as described in Table 3. These

results are almost the same as other studies which reach 10 times faster in processing data, to

produce efficient outputs such as what has been done by Djamaluddin et al [18].

Furthermore, in terms of server resource usage, CPU, and RAM, when using only MySQL,

CPU usage is not different between the first run and next run as shown in Figure 3a and

Figure 3b. In the execution of the first run, the CPU is not used optimally. Meanwhile, with

ClickHouse, the CPU can reach 100% usage for a while and is accompanied by a shorter execution

time to make the way it works more optimal. Besides, ClickHouse can execute queries in parallel

on each CPU core, as shown in Fig. 12. The graph between Core 0 and Core 1 almost always

coincides when it goes up and down. The execution time is up to 19 times faster when processed

in parallel. This condition is in contrast to MySQL which tends to execute queries serially as

shown in Figure 5. The graphics between Core 0 and Core 1 are opposite each other, indicating

that execution will utilize one core first, while the other cores are idle. Parallel processing on

multi-core CPUs becomes a necessity because the current era CPU architecture allows it and

can minimize execution time [19]. The way it works is not optimal if the data being processed

takes a long time because the query runs serially on the CPU.
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The results of the t-test indicate that there was a significant difference between before and

after using ClickHouse. The system succeeded in maximizing existing resources to speed up

execution time. Thus, the query execution process became more optimal. RAM usage of both

MySQL and ClickHouse is not much different. ClickHouse has a tendency to use higher RAM

as shown in Figure 4a, Figure 4b, Figure 7a and Figure 7b. It is suspected that minor page

faults (data reading from memory) [20] are more dominant than major page faults, indicating

that it minimizes data reading from disk, but from memory pages.

During the query execution process, ClickHouse did not fail to complete the process. How-

ever, seen from the graph, the CPU and RAM usage which is always high might delay other

processes because all resources are being used by ClickHouse. SQL dialect which is not much dif-

ferent between MySQL and ClickHouse can be taken into consideration, indicating that it does

not take much time to learn a new query language. Since not all column-oriented databases use

SQL, thus, SQL Layers such as Apache Phoenix [21] must be added to profit for the company.

5. Conclusions

A column-oriented database such as ClickHouse can be used to optimize server capabilities

in generating reports or dashboards. Column-oriented databases do not replace but complement

existing relational databases. However, this is still an early stage of the experiment and still

needs to be developed further. In the next experiment, it is possible to use more complex queries,

larger data, by tuning the configuration, using another type of ClickHouse table engine that has

better performance, and
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