PERFORMANCE ANALYSIS OF LOGISTIC REGRESSION ALGORITHM IN OPINION SEGMENTATION OF INDOSAT NETWORK SERVICE REVIEWS
Abstract
In the era of the industrial revolution 4.0, where the use of network services has become a basic need and cannot be separated from daily activities, the massive number of network service users can be proven by the increasing number of people using digital platforms to search for information, express opinions or even just to communicate with each other, currently network services are available in the form of digital platforms that can be used to purchase network data packages or just to monitor the quality of network services, therefore this study aims to analyze user sentiment towards network services that have been launched by the Indosat provider based on the results of user reviews sourced from the digital platform using a machine learning approach and a logistic regression algorithm model to determine the segmentation of opinions that are widely expressed on the digital platform. The results of this study indicate that the logistic regression algorithm is able to analyze patterns of consumer characteristics with good accuracy in the algorithm model, and the results of the accuracy of the algorithm model in finding segmentation patterns in sentiment opinions reach an accuracy value of 85%, precision 81%, recall 77% and f1-score 79% to predict an opinion that has negative and positive sentiment during testing, then network speed, connection disruption and network data package prices are one of the factors that can influence an opinion regarding negative and positive sentiment.
Full Text:
PDFReferences
Speedtest, “Speedtest Global Index Internet Speed Around The World,” Speedtest. Accessed: May 15, 2025. [Online]. Available: https://www.speedtest.net/global-index
L. E. Putri and M. Asri Humaira, “Pengaruh Ulasan Produk Terhadap Keputusan Pembelian Konsumen,” Karimah Tauhid, vol. 3, no. 1, pp. 694–702, 2024, doi: 10.30997/karimahtauhid.v3i1.9206.
C. F. Riska, Y. Hendayana, and M. Wijayanti, “PENGARUH ULASAN KONSUMEN, KUALITAS PRODUK DAN MARKETING INFLUENCER TERHADAP KEPUTUSAN PEMBELIAN PRODUK ERIGO (Studi Kasus Mahasiswa Universitas Bhayangkara Jakarta Raya),” Junal Econ., vol. 2, no. I, pp. 1–19, 2023.
W. Andriyani, Y. Astuti, and B. A. Wisesa, “Analisis Sentimen pada Ulasan Produk dengan SVM dan Word2Vec Sentiment Analysis on Product Reviews with SVM and Word2Vec,” no. 1, pp. 173–185, 2024, doi: 10.26798/jiko.v8i1.1498.
S. Malviya, A. K. Tiwari, R. Srivastava, and V. K. Tiwari, “Machine Learning Techniques for Sentiment Analysis: A Review,” SAMRIDDHI A J. Phys. Sci. Eng. Technol., vol. 12, no. 2, pp. 72–78, 2020, doi: 10.18090/samriddhi.v12i02.3.
P. A. N. Aryanti and I. B. M. Mahendra, “Analisis Sentimen Opini Berbahasa Indonesia Pada Sosial Media Menggunakan TF-IDF dan Support Vector Machine,” J. Elektron. Ilmu Komput. Udayana, vol. 12, no. 1, pp. 2654–5101, 2023.
E. Budianita, E. P. Cynthia, A. Pranata, and D. Abimanyu, “Pendekatan berbasis Machine Learning dan Leksikal Pada Analisis Sentimen,” Semin. Nas. Teknol. Informasi, Komun. dan Ind., pp. 99–104, 2022, [Online]. Available: https://ejournal.uin-suska.ac.id/index.php/SNTIKI/article/view/19137
G. H. Kusuma, I. Permana, F. N. Salisah, M. Afdal, M. Jazman, and A. Marsal, “Pendekatan Machine Learning: Analisis Sentimen Masyarakat Terhadap Kendaraan Listrik Pada Sosial Media X,” JUSIFO (Jurnal Sist. Informasi), vol. 9, no. 2, pp. 65–76, 2023, doi: 10.19109/jusifo.v9i2.21354.
Alfandi Safira and F. N. Hasan, “Analisis Sentimen Masyarakat Terhadap Paylater Menggunakan Metode Naive Bayes Classifier,” Zo. J. Sist. Inf., vol. 5, no. 1, pp. 59–70, 2023, doi: 10.31849/zn.v5i1.12856.
A. Kartika Sari, Akhmad Irsyad, Dinda Nur Aini, Islamiyah, and Stephanie Elfriede Ginting, “Analisis Sentimen Twitter Menggunakan Machine Learning untuk Identifikasi Konten Negatif,” Adopsi Teknol. dan Sist. Inf., vol. 3, no. 1, pp. 64–73, 2024, doi: 10.30872/atasi.v3i1.1373.
I. Jahan, M. N. Islam, M. M. Hasan, and M. R. Siddiky, “Comparative analysis of machine learning algorithms for sentiment classification in social media text,” Libr. Prog. Int., vol. 44, no. 3, pp. 8139–8145, 2024.
M. Mohaiminul and N. Sultana, “Comparative Study on Machine Learning Algorithms for Sentiment Classification,” Int. J. Comput. Appl., vol. 182, no. 21, pp. 1–7, 2018, doi: 10.5120/ijca2018917961.
M. Yusuf Hidayatulloh, A. Sunanto, M. Farrell Afelino Gevin, and D. Dwi Saputra, “Optimasi Sentimen Analisis Informatif dan Tidak Informatif dari Tweet di BMKG Menggunakan Algoritma Naive Bayes dan Metode Teknik Pengambilan Sampel Minoritas Sintetis,” J. Sains Komput. Inform. (J-SAKTI, vol. 7, no. 1, pp. 1–12, 2023.
R. Tineges, A. Triayudi, and I. D. Sholihati, “Analisis Sentimen Terhadap Layanan Indihome Berdasarkan Twitter Dengan Metode Klasifikasi Support Vector Machine (SVM),” J. Media Inform. Budidarma, vol. 4, no. 3, p. 650, 2020, doi: 10.30865/mib.v4i3.2181.
V. A. Permadi, “Analisis Sentimen Menggunakan Algoritma Naive Bayes Terhadap Review Restoran di Singapura,” J. Buana Inform., vol. 11, no. 2, pp. 141–151, 2020, doi: 10.24002/jbi.v11i2.3769.
I. Afdhal, R. Kurniawan, I. Iskandar, R. Salambue, E. Budianita, and F. Syafria, “Penerapan Algoritma Random Forest Untuk Analisis Sentimen Komentar Di YouTube Tentang Islamofobia,” J. Nas. Komputasi dan Teknol. Inf., vol. 5, no. 1, pp. 122–130, 2022, [Online]. Available: http://ojs.serambimekkah.ac.id/jnkti/article/view/4004/pdf
B. Kholifah, I. Thoib, N. Sururi, and N. D. Kurnia, “Analisis Sentimen Warganet Terhadap Isu Layanan Transportasi Online Berbasis InSet Lexicon Menggunakan Logistic Regression,” Kumpul. J. Ilmu Komput., vol. 11, no. 1, pp. 14–25, 2024.
Y. Chen, P. Liu, and C. P. Teo, “Regularised Text Logistic Regression: Key Word Detection and Sentiment Classification for Online Reviews,” pp. 1–23, 2020, [Online]. Available: http://arxiv.org/abs/2009.04591
DOI: http://dx.doi.org/10.26798/jiss.v4i1.2004
Article Metrics
Abstract view : 15 timesPDF - 1 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Sandy Ananda Dwi, Danny Kriestanto, Ajie Al Qadri Anwar, Syahrur Ro'uf, Lintang Suci Rochmana, Muhammad Agung Nugroho
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- https://jurnal.narotama.ac.id/
- https://www.spb.gba.gov.ar/campus/
- https://revistas.unsaac.edu.pe/
- https://proceeding.unmuhjember.ac.id/
- https://ejournal.uki.ac.id/
- https://random.polindra.ac.id/
- https://scholar.ummetro.ac.id/
- https://ejournal.uika-bogor.ac.id/
- https://www.iejee.com/
- https://e-journal.iainptk.ac.id/
- https://journal.stitpemalang.ac.id/
- https://revistas.unimagdalena.edu.co/
- https://catalogue.cc-trieves.fr/
- https://revistas.tec.ac.cr/
- https://jurnal.poltekapp.ac.id/
- https://ojs.ucp.edu.ar/
- https://ihcway.sakura.ne.jp/
- http://www.apps.buap.mx/
- http://media-ojs.vls.icm.edu.pl/
- https://saber.unioeste.br/
- https://cinnda.org/
- https://jurnal.untidar.ac.id/
- https://ojs.adzkia.ac.id/
- https://supp.journalrmc.com/
- https://journal.thamrin.ac.id/
- https://ejurnal.unima.ac.id/
- https://journal.umpalopo.ac.id/
- https://ejournal.upnvj.ac.id/
- https://journal.ittelkom-pwt.ac.id/
- https://ojs.unpatompo.ac.id/
- https://jurnal.staim-probolinggo.ac.id/
- https://jurnal.ppi.ac.id/
- https://revistas.urp.edu.pe/