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Abstract

This study discusses strategies for increasing memory efficiency in Android application development using
optimal data structures. In the era of growing mobile device usage, especially in Indonesia, where the number
of users exceeds the total population, memory management has become a significant challenge for Android
developers. This study analyzes various data structures such as List, ArrayList, MutableList, and LinkedList,
as well as comparisons between object and primitive data types in Kotlin. The results show that primitive
data structures offer better memory efficiency and execution time than object-based data structures due to
their simpler structure and lower complexity. Meanwhile, object data types like MutableList and ArrayList
are more efficient for applications that require a balance between flexibility and performance, as they provide
both primitive-like characteristics and useful built-in functions. This study also emphasizes the importance
of understanding memory management and time complexity in optimizing Android application performance.
Testing was conducted using both automated and manual methods. The findings show that Kotlin reduces
memory usage by up to 2x and execution time by 28.6primitive arrays and LinkedLists showed the most stable
memory performance, while MutableLists offered the best balance for object types.
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1. Introduction

According to a 2023 Google survey, the number of mobile device users in Indonesia reached 354 million,
whereas the population of Indonesia, according to the Central Statistics Agency, is approximately 278.69
million people. This comparison shows that the number of mobile device users exceeds the population.
From these data, the opportunity to develop and innovate in mobile device applications is enormous.

According to data from StatCounter (https://gs.statcounter.com/), the average Android mobile device user
accounts for approximately 70% of the total mobile device users. In comparison, iOS mobile device users
comprise around 30%. The above data shows that the number of Android users worldwide is significantly
larger than that of i0S users. Android, with its open-source operating system base and Linux foundation,
was initially designed by Android Inc. before being acquired by Google in 2005. In 2007, Android was
introduced to the public, marking a significant shift in how we use technology. Although open-source,
access to Google services is still provided through the Google Play Framework.

Memory management in smartphones involves multiple strategies. Efficient reference handling can reduce
memory leaks[1], while the choice of data structure significantly impacts memory usage. For instance,
ArrayList can outperform LinkedList in certain cases due to lower overhead, and tools such as Instruments
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help detect performance issues[2]. Images and multimedia also contribute heavily to memory load, where
compression and formats such asWebP are recommended[1]. Effective garbage collection[3], asynchronous
programming, and thread management[4],[5] are equally crucial for improving efficiency.

Optimization has been explored at various levels, from application to kernel and system services. Reinfor-
cement learning can reduce power consumption by up to 15%[6], while PSO-LSTM achieves a 60.7redu-
ction in page re-faults and faster launch times[7]. At the system level, selective limitation of services can
save up to 150 MB of RAM[8]. Other efforts include Conditional Access for faster memory release[9], in-
memory tree algorithms for hierarchical data[10], and many-to-many data structures for efficient logging
and caching[11].

Additional techniques span graphics rendering (e.g., LoD optimization[12]), Al-based approaches such
as SmartSplit for CNN partitioning[13], and performance surveys across applications, frameworks, and
VMs[14]. Machine learning models have been applied in diverse contexts[15],[16],[17], but these do not
address comparative evaluations of memory efficiency among Android data structures. Studies compa-
ring Java and Kotlin show Kotlin’s advantages in CPU, memory, and execution time efficiency[18], while
optimized coding practices further improve resource usage[19].

A comprehensive survey has classified performance optimization efforts into three hierarchical levels: ap-
plication, framework, and virtual machine[14]. At the application level, standard techniques include code
refactoring, elimination of data redundancy, and the use of efficient data structures. At the same time,
more advanced approaches have leveraged BiLSTM, Naive Bayes with Particle Swarm Optimization, and
XGBoost for domain-specific tasks[15],[16],[17]. Other studies compared Java and Kotlin in Android deve-
lopment, showing Kotlin’s slight superiority in CPU and memory usage[18], and highlighted that improved
coding practices and direct testing can further reduce resource consumption[19]. Beyond language-level
improvements, strategies spanning application, kernel, and hardware layers have been proposed to enhan-
ce memory efficiency. However, despite these advances, there remains a lack of comprehensive empirical
evaluations that directly compare the memory usage and execution time of different data structures—both
primitive and object-based—within Android applications, a gap that is particularly critical for resource-
constrained devices.

This study contributes a structured empirical comparison of data structures in Android using both memory
usage and execution time as metrics, a topic that is rarely addressed in prior works. The findings can help
developers optimize performance in memory-constrained environments, especially for entry- to mid-level
Android devices. Kotlin shows significant advantages in memory management. Kotlin can reduce memory
usage by up to 2 times compared to Java in several complex Android applications and offers features such
as null safety that reduce errors that have the potential to cause memory leaks[20]. This study compares
the use of data structures, including Array, List, ArrayList, MutableList, and LinkedList, to determine the
optimal time and space complexity in Android application development. Efficient memory usage is a critical
factor in enhancing the performance of Android applications, especially when processing large amounts
of data. Empirical studies have shown that selecting appropriate data structures can significantly reduce
memory overhead across different smartphone hardware architectures[21].

Previous studies also compared Java and Kotlin in Android development, where Kotlin was found to be
slightly superior in CPU efficiency (0.65%), memory usage (up to two times more efficient), and execution
time (1621 ms vs. 2268 ms). These findings, as reported in[18], support the decision to use Kotlin as the
implementation language in this study. At the same time, the experimental focus remains on evaluating
data structure efficiency rather than language performance. In practical terms, these results suggest that
developers targeting entry- to mid-level Android devices should consider Kotlin as the preferred langu-
age to reduce memory footprint and improve responsiveness. Meanwhile, Java may still be valuable for
maintaining legacy systems or projects that require compatibility with older frameworks, and in specific
contexts has shown slightly better efficiency than Kotlin[22].
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2. Methodology

The research stages in this study are carried out through a series of interrelated systematic steps. Each
stage has an achievement indicator that functions to evaluate the progress and accuracy of the ongoing
process.

The research process flows visualized in Figure 1, which starts from the literature study activity to identify
previous research and relevant problems. Furthermore, a system analysis is carried out to understand the
characteristics and needs of the Android application development that is the focus of the study. Based on
the results of the analysis, the researcher designs a solution model that is used as a framework in simulation
and testing. After that, the designed model is implemented and tested to collect performance data, both in
terms of memory efficiency and time complexity. The results of this test are then analyzed and compiled
into a final report that presents conclusions and recommendations based on the research findings.

This sequential step-by-step approach is designed to ensure that the development of the research model
is based on a strong theoretical foundation and empirical findings. The literature study conducted at the
initial stage plays an important role in comparing the various approaches that have been used in previous
studies. This approach allows researchers to formulate a sharper and more contextual system analysis.
Thus, the model built is not only theoretically relevant but also practically tested in Android application
development simulations. The results of the model then produce accurate and representative data, so that
it can be used as a basis for compiling a comprehensive and academically valid report.

Research Stage
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Model Design

—
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Gambar 1. Research Stage Flowchart

Literature study is used to obtain the state of the art of research, including formulating problems and
proposed solutions. After conducting a literature study, the next stage is to conduct a system analysis. In
the system analysis stage, the research focuses on the system used to develop Android applications. This
research is conducted by observing and analyzing memory utilization in a data structure, the processing
time of data structure types, and the methods used by the application to implement the data structure. After
conducting a system analysis, the next stage is to create a design model for the proposed solution that will
be used to provide a complete picture of the research to be carried out, including creating a smartphone
memory optimization model for Android applications. The next stage is the model testing stage which
begins with system development for model simulation. This stage is carried out by simulating the model
applied to smartphones that have minimum and maximum specifications. This simulation is done to see
the performance of the model created. The fifth stage is to obtain data and analyze the test results data.
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In the fifth stage, the model created in stage three, which has been tested in stage four, is then collected
based on several categories and data comparison is carried out. The final stage is to make a report and a
conclusion based on the results of the previous stages.

The flowchart for the system analysis process is shown in Figure 2, which begins with determining the
parameters, implementing the data structure to be used, and Testing and Test Evaluation.

Part 1 & mpgt':u%{ure Part 3 Part4
Determining parameters Implementation Testing Evaluation of test results
[1ata processing Hme'as Define the data Running the Evaluation

Alme compiexhy structure to be used application time complexity
parameter i a
Theui;n::?aofsg;irgow Creating Android Testing Primitive Data Ewvaluation of space
complexity parameter applications Structures complexity
Using ListView as a View Using primitive data Testing List data Determining the most
Component structures structure optimal data structure
Using List data Testing ArrayList data
structure structure
Using ArrayList data Testing MutableList
structure data structure
Using MutableList Testing Linked List
data structure data structure
Using Linked List
data structure

Gambar 2. System Flowchart

Figure 2 depicts the detailed flow of the system analysis process, which consists of four main stages: deter-
mining parameters, implementing data structures, testing, and evaluation. Each stage is described in the
following subsections.

2.1 Determining Parameters

In part one, researchers will determine the testing parameters. Commonly used parameters include Big-
O notation, which is used to calculate time complexity and space complexity. Time complexity indicates
how long it takes to complete an algorithm. Algorithm performance evaluations often focus on execution
time and resource usage (e.g. memory) especially for real-time data processing[23]. Time complexity is
calculated against the input size, while space complexity measures the memory required by the algorithm.
This study shows that accounting for complexity is crucial, especially in memory-constrained systems
(such as mobile devices), because space complexity affects the design of algorithms in that environment.

Meanwhile, space complexity is how much memory is needed to run the algorithm. In addition to the time
parameters and memory space required, at this stage the researcher also determines the use of components
that will be used in the development of the Android application. To test the use of data structures in
Android applications, there are several components that can be used, and one of those used in the study
is Listview. ListView is a component that displays a collection of vertically scrollable views, where each
view is positioned directly below the previous view in the list[1]. ListViews that display many items can
consume quite a lot of memory and CPU, potentially reducing application performance[24]. Therefore, the
researcher decided to use ListView as a testing component so that it can.
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2.2 Data Structure Implementation

In the second part, the researcher determines and implements several types of data structures that will be
used as objects of comparison in this study. This process begins with the design of an Android application
prototype that can be run directly on Android devices. This application functions as a medium for inte-
grating and implementing various data structures, as well as a tool for testing performance and collecting
empirical data.

The data structures selected for this study include Array, List, ArrayList, MutableList, and LinkedList. The
selection of data structures is based on the general characteristics of each type, as well as their relevance
to usage scenarios in Android applications. Each data structure has its advantages and disadvantages,
especially in terms of time efficiency (time complexity) and memory usage (space complexity).

One important consideration in selecting a data structure is its impact on application performance. For
example, ArrayList is one of the most frequently used data structures due to its efficienct memory alloca-
tion and direct element access via index. This structure has a relatively small memory footprint compared
to LinkedList, making it more memory efficient for general use cases. However, LinkedList can offer better
performance in scenarios involving intensive insertion or deletion of elements, especially at random posi-
tions in the list, although at the expense of greater memory usage due to the storage of additional pointers
for each element[25].

Previous research has shown that the use of collection data structures such as List and their implemen-
tations (ArrayList, LinkedList, and MutableList) has a direct impact on application performance, both in
terms of execution speed and efficiency of system resource usage. Therefore, by implementing various da-
ta structures directly into the application prototype, researchers can conduct comprehensive performance
measurements based on processing time and memory allocation parameters. The results of this test then
become the basis for evaluating which data structure is most optimal to use in the context of developing
efficient and responsive Android applications.

An array is a data structure that stores a fixed number of values with the same type or subtype, as exem-
plified by several primitive data types, such as Int, String, and Float[26]. Researchers will test the use of
Array by creating a List Adapter that contains arrays with primitive data types.

A List is a collection of elements that are typically sorted[26]. The List enables model customization of its
elements. Researchers will use lists in research and create customization of the elements within them. An
example of custom elements in the Kotlin programming language is shown in Listing 1.

Listing 1. Custom Element Example

data class CustomElement {
val Id: Int,
val name: String,
val bmi: Float

}

Some functions that are often used in List are size, get, and find. In Kotlin, an ArrayList is an ordered and
resizable collection of elements that utilizes an internal array for storage [26]. ArrayList is a mutable list,
meaning that elements can be added, removed, and modified after they are created. ArrayList allows for
custom elements to be added, similar to a List. The most commonly used functions in ArrayList are add,
addAll, get, remove, find, and size.

MutableList is a generally ordered collection of elements that supports adding and removing elements [26].
In Kotlin, ArrayList is one of the implementations of the MutableList interface. Therefore, all ArrayLists
are automatically Mutable Lists. However, there is a slight difference in approach. MutableList focuses
on the behavior of a collection of mutable elements. Its function provides basic operations for adding,
removing, and modifying elements in a list, regardless of howthe data is stored internally. ArrayList, on the
other hand, is a specific implementation of MutableList that uses an internal array to store elements. This
means that ArrayList offers some additional capabilities that may not be available in all other MutableList
implementations. By considering the nature of MutableList as a form of interface used in ArrayList, the
researcher decided to use MutableList as one of the comparison parameters in the study[27].
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LinkedList is an implementation of the List and Deque interfaces. It implements all optional List opera-
tions and allows all elements (including null)[28]. LinkedList is not directly described in the kotlinlang.org
documentation. However, considering that Kotlin is a programming language that runs on the JVM, it is
still possible to use it, as Java programming includes the LinkedList.

2.3 Testing

In this third stage, researchers conducted performance testing on the implementation of the data created
structure. This testing aims to evaluate the execution speed and memory usage of each algorithm, as both
metrics are key aspects in measuring application performance[29],[30]. An official Android benchmarking
library, such as Jetpack Microbenchmark, enables precise measurement of execution time in specific code
segments by applying warm-up iterations, ensuring clock stability, and mitigating thermal throttling[31].
Therefore, in this study, the measurements focused on algorithm execution time and memory usage during
runtime.

Testing Methods: Testing was conducted using two approaches to ensure consistent results. Automation
Ul Testing: Researchers created Ul automation tests using the Android Ul Automator framework. This
framework allows researchers to automatically simulate user interactions with interface components (e.g.,
scrolling a list). With this automation, test scenarios (such as entering data or navigating a ListView) can be
run repeatedly with the same pattern, making it easier to collect consistent performance data without ma-
nual errors[32]. Manual Testing: In addition to automation, researchers also run prototype applications
manually on the Android emulator. This manual testing serves as a comparison to ensure that the appli-
cation behavior and performance data obtained are in accordance following expectations. The Android
emulator is used to ensure a controlled and uniform testing environment for each experiment.

The prototype interface uses a ListViewcomponent (or the equivalent LazyColumn in Jetpack Compose) to
display structured data in a scrollable manner[33]. Each data structure (Array, List, ArrayList, MutableList,
and LinkedList) was implemented in Kotlin within the prototype to manage the same dataset of 1,000
integer elements. Identical operations—adding, removing, and searching elements—were executed in both
automated and manual tests. This execution ensured that performance differences arose from the intrinsic
characteristics of the data structures rather than variations in application logic.

Performance data were recorded using the debug and profiler tools in Android Studio. Execution Time:
Researchers inserted start and end time logs into the algorithm code using System.currentTimeMillis() to
calculate duration, with results printed to Logcat[29]. Memory Usage: The Android Studio Profiler was
employed to monitor real-time RAM consumption and to take heap snapshots for deeper inspection [30].
To ensure that hardware differences did not bias results, the tests were performed on both an Android
Emulator (Pixel 7 configuration, Android 15, 2 GB RAM, 2 vCPUs). This setup provided a balance between
controlled testing and realistic usage scenarios, as hardware resources such as CPU frequency and memory
capacity can significantly affect performance outcomes.

Each test scenario on each data structure produces execution time data (in nanoseconds) and memory
usage data (in MB) as described above. The raw data from Logcat and Memory Profiler are then further
processed—averaged or compared—to be analyzed in the results and discussion sections. Thus, this testing
phase ensures that the data structure implementation not only functions correctly, but also meets the
expected performance aspects.

[?] In the final stage of system analysis, researchers will collect the data obtained in the previous stage for
evaluation and analysis. The evaluation will be based on the parameters chosen by researchers in the first
stage, namely time complexity and space complexity. First, researchers will analyze Big-O based on the
data structure used, then use bar graphs to visualize the analyzed data.

3. Results and Discussion

Based on the system analysis conducted, a model was created using Kotlin as the programming langu-
age and Jetpack Compose as the tool to display the model within the Android interface. Kotlin with Je-
tpack Compose makes it easy to create a memory-efficient user interface. Jetpack Compose supports mo-
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re efficient UI updates, resulting in reduced unnecessary memory consumption compared to traditional
methods[34].

Efficient memory utilization remains a significant challenge in smartphone application development due to
RAM limitations, high responsiveness requirements, and low power consumption targets. At the hardware
level, techniques such as Search-in-Memory (SiM) reduce I/O overhead between storage and CPU while
improving cache efficiency, achieving up to ninefold search speed increases and 45% energy saving[35]. At
the application logic level, mechanisms like Conditional Access enable immediate memory release without
batching, and in-memory tree construction algorithms minimize access time and join overhead for hierar-
chical data[9],[10]. At the data structure design level, efficient many-to-many structures support faster and
more memory-conscious data logging and retrieval, particularly for use cases such as digital marketplaces
and local search caching[11]. These approaches highlight that memory efficiency can be addressed across
multiple layers, reinforcing the importance of selecting optimal data structures for performance-critical
Android applications.

Aside from data processing and memory release strategies, graphics rendering has also seen efforts in
memory and performance optimization. In the realm of graphics and rendering, the Fast Level of Detail
(LoD) technique has been shown to improve frame rates in Unity-based Android applications, while also
reducing both package size and memory consumption[12]. Similarly, in the context of Al-based mobile
applications, efficient model partitioning has gained attention. For mobile Al development, an approach
known as SmartSplit has been introduced to optimize the partitioning of convolutional neural network
(CNN) models between edge devices and the cloud. This method enhances latency efficiency by up to
57and improves energy efficiency by as much as 48%[13].

The model is composed of several data samples, including object models and primitive models. In the
object model, the data structures that can be implemented are List, ArrayList, MutableList, and LinkedList.
In the primitive model, the data structures that can be implemented are primitive Array, List, ArrayList,
MutableList, and LinkedList. In its implementation, the Array primitive cannot be implemented using the
object model due to the lack of support from the programming language used.

An example implementation of calculating the load time of a data structure in the object model is shown
in Listing 2.

Listing 2. Save the Start and End Time of the Data Load

LaunchedEffect (users) {
renderStartTime = System.nanoTime ()
snapshotFlow { users.size() }.collect {
renderEndTime = System.nanoTime ()

}

By using Listing 2, the start time and end time are obtained, which will determine the duration of the data
loading process. The data loading time can be calculated by subtracting the end time from the start time.

Listing 3. Calculate Data Load Time
val renderTime by derivedStateOf ({

if (renderStartTime != null && renderEndTime != null) {
renderEndTime!! - renderStartTime!!

} else {
null

By using Listing 3, the data loading time is obtained in nanoseconds. After the code is implemented, data
collection is carried out using UI testing. This UI testing can facilitate data collection because it allows the
application to run according to the script. From the process of running UI testing, the following data is
obtained.



3.1 Time Usage test Results

The results of the primitive data structure tests are presented in Table 1.
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Tabel 1. Primitive(P) Data Type Test Average Data

P data (ns)

P List (ns) P Mutable List (ns)

P ArrayList (ns)

P LinkedList (ns)

72,042
64,209
56,792
11,875
63,292
60,583
61,416
71,208
59,834
61,000

68,625.1

59,750
73,917
185,042
60,625
3,103,292
58,667
68,167
60,625
61,292
184,292

391,566.9

58,375
428,083
131,083

75,333

59,583

64,708

64,041

61,291

69,792

62,625

Average

107,491.4

59,709
850,166
66,166
56,584
59,666
60,416
84,958
61,042
62,125
59,666

142,049.8

5,458
60,667
64,916
56,459
60,291
60,667
58,958
57,958
75,542
61,791

61,470.7

From the test results, the standard deviation, minimum, median, and maximum calculations were obtained,

as shown in Table 2.

Tabel 2. Statistical Data Of Primitive (P) Data Type Testing Results

Std Dev Min Median Max
Pdata(ns) 17,291.42 56,792 62,354 115875
P List (ns) 954,149.35 58,667 64,729 3,103,292
P Mutable List (ns)  190,196.68 58,375 67,250 595,583
P Array List (ns) 248,935.35 56,584 60,729 850,166
P LinkedList (ns) 5,502.82 56,459 60,479 75,542

Based on the data in Table 1 and Table 2, the following points can be analyzed. Stability: The LinkedList
primitive exhibits the lowest variability (standard deviation), indicating the most consistent performance
among other data structures. The List primitive exhibits high variability, displays inconsistent performance
and is likely to be affected by outliers.

le6

Execution Time Statistics

3.0 4

2.5+

2.0

154

Nanoseconds (ns}

1.0+

0.5+

0.0

A
\(\’1
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Data Type

B Std Dev
Min

mm Median
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Gambar 3. Statistical Data of Primitive (P) Data Type Testing Results
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These statistical observations provide valuable insights into the performance consistency of each primi-
tive data structure. Building on these findings, the subsequent section presents the results of object data
structure testing, as summarized in Table 3.

Median vs. Mean: For the List and MutableList primitives, the median is significantly lower than the mean,
indicating a high number of outliers that affect the mean. The other data structures show medians that are
close to the mean, indicating a more symmetric distribution.

Boxplot: The boxplot displays the distribution of execution times for each data structure, with the List pri-
mitive exhibiting some significant outliers. The LinkedList primitive and the data primitive show narrower
and more consistent distributions.

The results of object data structure testing are presented in Table 3.

Tabel 3. Object Data Type Test Data

List (ns) Array List (ns)  Mutable List (ns)  LinkedList (ns)

1,910,333 969,792 1,242,416 2,384,708
156,292 1,906,167 210,667 151,875
163,584 249,375 149,416 151,750
142,208 155,958 144,542 181,083
189,125 274,583 130,708 157,833
126,541 147,500 131,083 217,208
169,875 145,917 134,459 117,416

3,150,167 114,458 112,000 158,625
127,708 107,000 123,417 110,459

1,325,411 189,500 311,166 223,250

Average
626,837.4 426,025 268,987.4 385,420.7

From the tests carried out, data were obtained as in Table 3. With this data, the standard deviation, min,
max, and median can be calculated as shown in Table 4.

Tabel 4. Statistical Data of Object Data Type Test Results

Std Dev Min Median Max
List (ns) 1,045,072.99 126,541 159,938 3,150,167
Array List (ns) 549,946.42 107,000 189,500 1,906,167
Mutable List (ns) ~ 347,147.10 112,000 139,500.5 1,242,416
LinkedList (ns)  703,428.66 110,459 158,229 2,384,708

From Table 4, the statistical metrics for each object data structure can be summarized and visualized for
easier comparison. Figure 4 illustrates these results, highlighting differences in variability, minimum, me-
dian, and maximum execution times. The following points provide a detailed interpretation of each data
structure.

Figure 4 presents the execution time statistics of the tested data structures. Among them, the List shows
the highest average execution time with considerable variability, indicating significant outliers that reduce
its reliability. LinkedList also suffers from high variability, making it less consistent despite being slightly
faster than List. In contrast, MutableList achieves the most stable performance with lower variability,
making it suitable for operations that require predictable execution time. ArrayList provides a balanced
compromise between speed and stability, but still exhibits right-skewed distributions due to several high
outliers[36].

From these results, MutableList emerges as the most efficient option for applications requiring consistent
responsiveness, such as interactive mobile interfaces or real-time data handling. ArrayList is beneficial
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Gambar 4. Statistical Data of Primitive (P) Data Type Testing Results

in scenarios prioritizing faster average access, for example, in data retrieval operations. In contrast, List
and LinkedList may not be suitable for latency-sensitive tasks due to their variability and higher memory
overhead.

3.2 Memory Usage Test Results

When testing memory usage on primitive data types, the Profiler feature in Android Studio is utilized. An
example of the results of capturing memory allocation is shown in the image.

& MEMORY ¥  Heap Dump: 01:37.229
View app heap Arrange by class v Show all classes Q- fordewe|

0 0 7,536 0 257,104 1,365,676

Classes Leak Count  Native Size  Shallow Size  Retained Size

Class Name Allocat... ¥ Native Size Shallow Size Retained Size

(3 app heap 7,536 257,104 1,365,676
Address 1,600 57,600 403
Coordinates 1,600 25,600 327
User 800 96,000 736
Bank 800 22,400 368
Company 800 19,200 355
Crypto 800 16,000 338
Hair 800 12,800 320
UserLinkedList$Node 200 3,200 248
QueueActivityKt$ltemQueue$2 28 560 288
ThemeKt$BudifamTheme$1 9 234 288
StructureData 5 80 385

o

0
0
0
0
0
0
0
0
(]
0
0

Gambar 5. Memory Allocation Analysis for a LinkedList Object as Recorded by the Android Studio Profiler

Figure 5 illustrates the memory allocation structure for the LinkedList object as captured using the Android
Studio Profiler. Key components shown include allocation count, shallow size, and retained size, which are
used as the basis for evaluation in this study.

From the results of the memory allocation capture produced by the profiler, several components can be
used as a reference, namely memory allocation, shallow size, and Retained size. Shallow size is the amount
of memory used by the object itself, without counting the memory used by other objects referenced by the
object. For example, for an Address object that contains a reference to a Bank object, the Shallow Size of the
Address object will only include the memory used by the Address, excluding the Bank’s size. Retained size
is the total amount of memory that would be freed if the object and all objects that can only be accessed
through the object were deleted. In other words, it includes the Shallow Size of the object itself plus the
Retained Size of all objects referenced by it. Retained size gives an idea of how much memory impact an
object would have if it were deleted because it includes all objects that depend on it.

The results of recording memory usage from the data structures used are presented in Table 5.



506 Muchamad Mafmudin et al.

Tabel 5. Structure Data Memory Allocation Data

Data Structure Allocation  Shallow Size  Retained Size
Object List 3703 127,840 1,341,038

Object Array List 5518 190,854 1,316,563
Object Mutable List 5496 190,362 1,274,695
Object Linked List 7536 257,104 1,365,676
primitive 44 1,476 1,234,239

primitive List 53 1,988 1,265,360
primitive Array List 61 2,480 1,194,605
primitive Mutable List 70 2,992 1,260,281
primitive Linked List 61 2,480 1,192,030

From Table 5, it can be observed that the LinkedList primitive achieved the lowest retained size among all
primitive data structures (1,192,030 bytes), indicating high memory efficiency and making it suitable for
applications that are sensitive to memory usage. In contrast, the MutableList primitive recorded a higher
retained size (1,260,281 bytes), rendering it less optimal for scenarios with strict memory constraints.

Among object-based data structures, the MutableList object exhibited the lowest retained size (1,274,695
bytes), suggesting better memory efficiency compared to other object-based alternatives. Conversely, the
LinkedList object consumed the largest retained size (1,365,676 bytes), making it the least favorable choice
for memory-constrained applications.

When considering execution time, the MutableList demonstrated the most stable and predictable perfor-
mance, making it preferable for scenarios requiring consistent responsiveness, such as smooth Ul rendering
or real-time data processing. The ArrayList offered faster average access than List and LinkedList, but its
relatively high variability limits its use in latency-sensitive applications. Both List and LinkedList exhibited
significant variability, reducing their suitability for operations requiring predictable performance.

Taken together, the results highlight the trade-offs between execution time and memory allocation. From
the memory perspective, the LinkedList primitive proved the most efficient, while the MutableList object
offered the best compromise among object-based structures. From the execution-time perspective, Mu-
tableList emerged as the most reliable, while ArrayList provided a balanced option for frequent access
operations, albeit with variability concerns.

Overall, these findings indicate that no single data structure is universally optimal. Developers should
select data structures according to application requirements: primitives (e.g., LinkedList or Array) for
resource-constrained devices, MutableList for consistency in execution, and ArrayList for frequent-access
operations with acceptable variability. These practical insights extend the contribution of this study be-
yond numerical evaluation by providing concrete guidance for real-world Android development.

4. Conclusion

This study demonstrates that primitive data structures consistently outperform object-based data stru-
ctures in both execution time and memory efficiency. Primitive collections such as IntArray allocate sig-
nificantly less memory and complete operations faster than object collections like List<Int> or Linke-
dList<Int>.

Empirical tests also show that LinkedList requires up to five times more memory than ArrayList, while
its sequential node traversal results in slower execution and reduced stability. By comparison, array-based
lists such as ArrayList provide better performance than LinkedList, but remain less efficient than primitive
structures due to object boxing overhead.

These findings highlight that primitive data structures are the most suitable choice for performance-critical
or large-scale Android applications. In contrast, object-based data structures may be more appropriate
when flexibility and ease of development are prioritized. Developers should carefully consider this tra-
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deoff when designing applications for resource-constrained devices. Future work may explore hybrid or
compiler-assisted optimizations to improve memory efficiency while maintaining the usability of object
collections.
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