PENGENALAN WAJAH INDIVIDU BERBASIS 3D BIOMETRIK

Harist Gymnovriza, Ledya Novamizanti, Eko Susatio

Abstract


Saat ini sistem aplikasi pengenalan individu yang menggunakan media wajah 3D cukup menarik perhatian peneliti. Wajah merupakan identitas yang khas dan unik dari masing – masing individu. Dalam kasusnya, wajah dapat diolah sebagai citra berbasis 2D dan 3D. Oleh karena itu, pada tugas akhir ini sebagai pemecah masalah tersebut digunakanlah metode ekstraksi berdasarkan konsep ICP atau Iterative Closest Point. Citra 3D didapatkan dengan menggunakan kamera Kinect v2, dimana jumlah pengambilan sebanyak 48 foto setiap individunya. Citra hasil akuisisi diproses dengan memberikan beberapa kali iterasi yang terpusat pada wajah individu. Selain itu juga dilakukan partisi terhadap citra wajah 3D menjadi 3 dan 6 bagian untuk mengetahui pengaruh partisi wajah terhadap tingkat akurasi. Pengujian dilakukan terhadap citra wajah 3D hasil akuisisi dengan kamera Kinect Penggunaan metode K-Nearest Neighbor (KNN) pada studi kasus 3D face recognition mendapatkan akurasi sebesar 88,09 % pada percobaan iterasi 25, 6 partisi dan nilai K = 1.


Keywords


Wajah, Iterative Closest Point, KNN, Iterasi, Citra 3D, Kinect

References


Y.-W. Kao, H.-Z. Gu and S.-M. Yuan, "Personal based authentication by face recognition," in Fourth International Conference on Networked Computing and Advanced Information Management, Gyeongju, 2008.

B. B. Amor, et al, "3D Face recognition by ICP-based shape matching," in Lyon Research Center for Images and Intelligent Information Systems, Lyon, 2005.

S.Sumathi and R. Malini, "Face Recognition System to enhance E health," in 2010 International Conference on E-Health Networking, Digital Ecosystems and Technologies , Shenzhen, 2010.

Z. Guo and Y.-Y. Fan, "Sparse Representation for 3D Face Recognition," in 2013 Fourth World Congress on Software Engineering, Hong Kong, 2013.

J. B. C. Neto and A. N. Marana, "Face Recognition Using 3DLBP Method Applied to Depth Maps Obtained from Kinect Sensors," X Workshop de Vis˜ao Computacional, pp. 168-172, 2014.

C. Samir, A. Srivastava and M. Daoudi, "3D Face Recognition Using Shape Of Facial Curves," in 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, Toulouse, 2006.

L. Zhang, "3DMKDSRC: A Novel Approach For 3D Face Recognition," in 2014 IEEE International Conference on Multimedia and Expo (ICME), Chengdu, 2014.

D. Han and Y. Ming, "Facial Expression Recognition With LBP and SLPP Combined Method," in 2014 12th International Conference on Signal Processing (ICSP), Hangzhou, 2014.

M. Romero, "Face recognition using Eigensurface on Kinect depth-maps," IPCV'16, pp. 241-247, 2016.

A. F. Abate, "2D and 3D face recognition: A survey," Pattern Recognition Letters, vol. XXVIII, no. 14, pp. 1885-1906, 2007.

A. D. Tumuli, X. N. Najoan and A. M. Sambul, "Implementasi Teknologi Biometrical Identification untuk Login Hotspot," E-Journal Teknik Informatika , vol. 12, no. 1, pp. 1-5, 2017.

D. Suprianto, R. N. Hasanah and P. B. Santosa, "Sistem Pengenalan Wajah Secara Real-Time dengan Adaboost, Eigenface PCA & MySQL," Jurnal EECCIS, vol. VII, no. 2, pp. 179-184, 2013.

R. Munir, Pengolahan Citra Digital. Bandung: Informatika Bandung, Bandung: Informatika, 2004.

D. Putra, Pengolahan Citra Digital, Yogyakarta: Andi, 2010.

Y. M. Rihi, A. J. Santoso and I. Wisnubadhra, "Perancangan Sistem Keamanan Pada Mesin ATM Menggunakan Verivikasi Sidik Jari Life Fingerprint Security," in Seminar Nasional Informatika 2013 (semnasIF 2013), Yogyakarta, 2013.

H. Tang, "Self-Adaptive 3D Face Recognition Based on Feature Division," in 2009 Fifth International Conference on Image and Graphics, Xi'an, 2009.

Z. Zhang, "Microsoft Kinect Sensor and Its Effect," IEEE MultiMedia, vol. XIX, no. 2, pp. 4-10, 2012.

H. Lu, et al, "Depth Map Reconstruction for Underwater Kinect Camera Using Inpainting and Local Image Mode Filtering," IEEE Access, vol. V, pp. 7115 - 7122, 2017.

T.-W. Hui and K. N. Ngan, "Motion-Depth: RGB-D Depth Map Enhancement with Motion and Depth in Complement," in 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, 2014.

J. Cook, et al, "Face recognition from 3D data using Iterative Closest Point algorithm and Gaussian mixture models," in Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, Thessaloniki, 2004.

F. B. t. Haar and R. C. Veltkamp, "A 3D Face Matching Framework," in IEEE International Conference on Shape Modeling and Applications, Stony Brook, 2008.

H. Yang, et al, "An Improved Iterative Closest Points Algorithm," World Journal of Engineering and Technology, vol. III, pp. 302-308, 2015.

A. Rohman, "Model Algoritma K-Nearest Neighbor (K-NN) Untuk Prediksi Kelulusan Mahasiswa," Neo Teknika, vol. I, no. I, 2015.

D. Nugraheny, "Metode Nilai Jarak Guna Kesamaan Atau Kemiripan Ciri Suatu Citra (Kasus Deteksi Awan Cumulonimbus Menggunakan Principal Component Analysis)," Angkasa, vol. VII, no. 2, 2015.

A. Novitasari, E. P. Purwandari and F. F. Coastera, "Identifikasi Citra Daun Tanaman Jeruk Dengan Local Binary Pattern dan Moment Invariant," Jurnal Informatika dan Komputer (JIKO), vol. III, no. 2, pp. 76-83, 2018.

P.N. Andono, T. Sutojo dan Muljono, “Pengolahan Citra Digital,” Yogyakarta: Andi Offset, 2017.




DOI: http://dx.doi.org/10.26798/jiko.v6i1.182

Article Metrics

Abstract view : 420 times
PDF (Bahasa Indonesia) - 96 times

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Harist Gymnovriza, Ledya Novamizanti, Eko Susatio


JIKO (Jurnal Informatika dan Komputer)

Published by
Lembaga Penelitian dan Pengabdian Masyarakat
Universitas Teknologi Digital Indonesia (d.h STMIK AKAKOM)

Jl. Raya Janti (Majapahit) No. 143 Yogyakarta, 55198
Telp. (0274)486664

Website : https://www.utdi.ac.id/

e-ISSN : 2477-3964 
p-ISSN : 2477-4413