PERAMALAN PELAYANAN SERVICE MOBIL (AFTER SALE) MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK (BPNN)

Novianti Puspitasari, Haviluddin Haviluddin, Arinda Mulawardani Kustiawan, Hario Jati Setyadi, Gubtha Mahendra Putra

Abstract


Mobil adalah salah satu alat transportasi darat yang penting, karena mobil dapat membantu manusia dalam beaktivitas khususnya untuk pergi dari satu tempat ke tempat lain. Hal ini membuat para produsen mobil berlomba-lomba untuk menciptakan mobil dengan kelebihan dan keunggulan, sehingga jumlah mobil dipasaran sangat banyak dan bervariasi. Seiring dengan meningkatkan jumlah mobil maka Agen Tunggal Pemegang Merk (ATPM) berlomba-lomba untuk memberikan pelayanan after-sale (service mobile). Namun, pihak perusahaan mengalami kesulitan dalam mengetahui laju pertumbuhan jumlah service mobile yang ditangani, sehingga memberikan kerugian yang berdampak pada sumber pendapatan. Oleh karena itu diperlukan sebuah metode baku dalam menentukan peramalan jumlah service mobil di tahun berikutnya. Penelitian ini mengimplementasikan metode Backpropagation Neural Network (BPNN) dalam peramalan  pelayanan service mobil (after-sale) dan Mean Square Error (MSE) untuk metode pengujian akurasi hasil peramalan yang terbentuk. Adapun data yang digunakan pada penelitian ini adalah data  pelayanan service mobil (after-sale) selama lima tahun terakhir. Hasil penelitian menunjukkan bahwa arsitektur terbaik untuk peramalan pelayanan after-sale menggunakan BPNN adalah model arsitektur 5-10-5-1 dengan learning rate sebesar 0,2 dan fungsi pembelajaran yaitu trainlm serta MSE sebesar 0,00045581. Hal ini membuktikan bahwa metode BPNN mampu memprediksi pelayanan service mobile (after-sale) dengan nilai akurasi peramalan yang baik.

Keywords


after-sale; Backpropagation Neural Network; Mobil; MSE; peramalan

References


J. A. Widians, N. Puspitasari, and A. F. A. Sari, “The prediction of tourist visiting with average based fuzzy time series method,” Int. J. Eng. Adv. Technol., vol. 8, no. 5, 2019, doi: 10.35940/ijeat.E1215.0585C19.

Mislan, A. F. O. Gaffar, Haviluddin, and N. Puspitasari, “Water Level Prediction of Lake Cascade Mahakam Using Adaptive Neural Network Backpropagation (ANNBP),” in IOP Conference Series: Earth and Environmental Science, 2018, vol. 144, no. 1, doi: 10.1088/1755-1315/144/1/012009.

A. Mahanggara and A. D. Laksito, “Prediksi Pengunduran Diri Mahasiswa Universitas AMIKOM Yogyakarta Menggunakan Metode Naive Bayes,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 10, no. 1, pp. 273–280, 2019, doi: 10.24176/simet.v10i1.2967.

M. Minarni and F. Aldyanto, “Prediksi Jumlah Produksi Roti Menggunakan Metode Logika Fuzzy (Studi Kasus: Roti Malabar Bakery),” J. TeknoIf, vol. 4, 2016, [Online]. Available: internal-pdf://74.101.9.59/548-1601-1-PB.pdf.

M. Wati, W. Indrawan, J. A. Widians, and N. Puspitasari, “Data mining for predicting students’ learning result,” in Proceedings of the 2017 4th International Conference on Computer Applications and Information Processing Technology, CAIPT 2017, 2018, vol. 2018-Janua, doi: 10.1109/CAIPT.2017.8320666.

C. Ardianto, H. Haryanto, and E. Mulyanto, “Prediksi Tingkat Kerawanan Kebakaran di Daerah Kudus Menggunakan Fuzzy Tsukamoto,” Creat. Inf. Technol. J., vol. 4, pp. 186–194, 2018, [Online]. Available: internal-pdf://167.117.96.251/109-220-1-SM.pdf.

N. Puspitasari, A. Tejawati, and F. Prakoso, “Estimasi Stok Penerimaan Bahan Bakar Minyak Menggunakan Metode Fuzzy Tsukamoto,” JRST (Jurnal Ris. Sains dan Teknol., vol. 3, no. 1, pp. 9–18, 2019, doi: 10.30595/jrst.v3i1.3112.

D. Gadaleta, S. Manganelli, A. Manganaro, N. Porta, and E. Benfenati, “A knowledge-based expert rule system for predicting mutagenicity (Ames test) of aromatic amines and azo compounds,” Toxicology, vol. 370, pp. 20–30, 2016.

K. Bisht and S. Kumar, “Fuzzy time series forecasting method based on hesitant fuzzy sets,” Expert Syst. Appl., vol. 64, pp. 557–568, 2016.

I. P. A. A. Pramana, “Peramalan Jumlah Kasus Demam Berdarah di Kabupaten Malang Menggunakan Metode Fuzzy Inference System,” J. Tek. ITS, vol. 5, 2016, [Online]. Available: internal-pdf://138.58.218.49/14114-34666-1-PB.pdf.

R. S. Kalaksita and I. Irhamah, “Peramalan Curah Hujan Harian di Stasiun Ahmad Yani Kota Semarang Menggunakan Adaptive Neuro Fuzzy Inference System (ANFIS),” J. Sains dan Seni ITS, vol. 5, 2016.

N. P. Sakinah, I. Cholissodin, and A. W. Widodo, “Prediksi Jumlah Permintaan Koran Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., 2018.

B. Majhi, M. Rout, and V. Baghel, “On the development and performance evaluation of a multiobjective GA-based RBF adaptive model for the prediction of stock indices,” J. King Saud Univ. - Comput. Inf. Sci., 2014, doi: 10.1016/j.jksuci.2013.12.005.

Purnawansyah and Haviluddin, “Comparing performance of Backpropagation and RBF neural network models for predicting daily network traffic,” in Proceeding - 2014 Makassar International Conference on Electrical Engineering and Informatics, MICEEI 2014, 2014, pp. 166–169, doi: 10.1109/MICEEI.2014.7067332.

E. Ma, Y. Liu, J. Li, and S. Chen, “Anticipating Chinese tourists arrivals in Australia: A time series analysis,” Tour. Manag. Perspect., vol. 17, pp. 50–58, 2016, doi: 10.1016/j.tmp.2015.12.004.

M. Syafiq, D. Hartama, I. O. Kirana, I. Gunawan, and A. Wanto, “Prediksi Jumlah Penjualan Produk di PT Ramayana Pematangsiantar Menggunakan Metode JST Backpropagation,” JURIKOM (Jurnal Ris. Komputer), vol. 7, no. 1, pp. 175–181, 2020, doi: 10.30865/jurikom.v7i1.1963.

H. Aini, H. Haviluddin, E. Budiman, M. Wati, and N. Puspitasari, “Prediksi Produksi Minyak Kelapa Sawit Menggunakan Metode Backpropagation Neural Network,” Sains, Apl. Komputasi dan Teknol. Inf., vol. 1, no. 1, pp. 24–33, 2019, doi: 10.30872/jsakti.v1i1.2261.

Haviluddin and N. Dengen, “Comparison of SARIMA, NARX and BPNN models in forecasting time series data of network traffic,” in Proceeding - 2016 2nd International Conference on Science in Information Technology, ICSITech 2016: Information Science for Green Society and Environment, 2017, pp. 264–269, doi: 10.1109/ICSITech.2016.7852645.

J. R. Simanungkalit, H. Haviluddin, H. S. Pakpahan, N. Puspitasari, and M. Wati, “Algoritma Backpropagation Neural Network dalam Memprediksi Harga Komoditi Tanaman Karet,” Ilk. J. Ilm., vol. 12, no. 1, pp. 32–38, 2020, doi: 10.33096/ilkom.v12i1.521.32-38.

H. Haviluddin, Z. Arifin, A. H. Kridalaksana, and D. Cahyadi, “Prediksi Kedatangan Turis Asing ke Indonesia Menggunakan Backpropagation Neural Networks,” J. Teknol. dan Sist. Komput., vol. 4, no. 4, pp. 485–490, 2016, doi: 10.14710/jtsiskom.4.4.2016.485-490.

H. X. Huang, J. C. Li, and C. L. Xiao, “A proposed iteration optimization approach integrating backpropagation neural network with genetic algorithm,” Expert Syst. Appl., 2015, doi: 10.1016/j.eswa.2014.07.039.

Haviluddin, R. Alfred, J. H. Obit, M. H. A. Hijazi, and A. A. A. Ibrahim, “A performance comparison of statistical and machine learning techniques in learning time series data,” Adv. Sci. Lett., 2015, doi: 10.1166/asl.2015.6490.




DOI: http://dx.doi.org/10.26798/jiko.v5i2.419

Article Metrics

Abstract view : 487 times
PDF (Bahasa Indonesia) - 194 times

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Novianti Puspitasari, Haviluddin Haviluddin, Arinda Mulawardani Kustiawan, Hario Jati Setyadi, Gubtha Mahendra Putra


JIKO (Jurnal Informatika dan Komputer)

Published by
Lembaga Penelitian dan Pengabdian Masyarakat
Universitas Teknologi Digital Indonesia (d.h STMIK AKAKOM)

Jl. Raya Janti (Majapahit) No. 143 Yogyakarta, 55198
Telp. (0274)486664

Website : https://www.utdi.ac.id/

e-ISSN : 2477-3964 
p-ISSN : 2477-4413