Segmentasi Berbasis Warna Untuk Pengelompokan Kualitas Cacing Anc Menggunakan Yolov8
Abstract
Mengembangkan metode otomatisasi dalam pengelompokan kualitas cacing African Night Crawler (ANC) menggunakan model YOLOv8 yang didukung oleh segmentasi berbasis warna. Metode manual yang selama ini digunakan dalam menilai kualitas cacing sering kali memakan waktu dan cenderung tidak konsisten, sehingga pendekatan berbasis teknologi diperlukan untuk meningkatkan efisiensi dan akurasi. Penelitian ini dimulai dengan pengumpulan dataset gambar cacing ANC, yang kemudian dianotasi berdasarkan tiga kelas utama, yaitu merah, putih, dan putih-biru. Dataset ini diproses melalui langkah-langkah preprocessing untuk memastikan kualitas data yang konsisten, kemudian dibagi menjadi training set (80%), validation set (15%), dan test set (5%). Model YOLOv8 diterapkan untuk mendeteksi dan mengklasifikasikan objek, dengan arsitektur yang terdiri dari Backbone, Neck, dan Head yang dirancang untuk mengoptimalkan deteksi multi-skala. Hasil penelitian menunjukkan bahwa model YOLOv8 memiliki performa yang sangat baik, dengan mean Average Precision (mAP) rata-rata sebesar 93.8% pada training set, 94.0% pada validation set, dan 95.0% pada test set. Nilai precision mencapai 95.6% pada training set, sementara recall mencatat 85.4%, menghasilkan F1-Score sebesar 90.3%. Hasil ini menunjukkan bahwa model tidak hanya akurat dalam mendeteksi objek yang relevan tetapi juga memiliki sensitivitas yang baik terhadap variasi data. Kesimpulannya, penggunaan YOLOv8 untuk segmentasi berbasis warna pada cacing ANC memberikan solusi yang efisien dan akurat dalam mengklasifikasikan kualitas cacing. Selain mendukung otomatisasi dalam industri peternakan, penelitian ini juga membuka peluang penerapan lebih lanjut dalam sektor agrikultur lainnya, dengan rekomendasi untuk meningkatkan generalisasi model pada variasi data yang lebih kompleks di kondisi dunia nyata.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
N. Baylon and I. Catian, “Population Growth rate of African Night (Eudrilus eugeniae) Crawler Fed with Different Leguminous Leaves as Supplement,” Philippine Journal of Agricultural Economics, vol. 3, no. 1, pp. 52–64, Jan. 2019, doi: 10.7719/pjae.v3i1.671.
F. Kabi, D. Kayima, A. Kigozi, E. Z. Mpingirika, R. Kayiwa, and D. Okello, “Effect of different organic substrates on reproductive biology, growth rate and offtake of the African night crawler earthworm (Eudrilus eugeniae),” Organic Agriculture, vol. 10, no. 3, pp. 395–407, Sep. 2020, doi: 10.1007/s13165-020-00284-5.
I. R. Dini, R. Saputra, D. Salbiah, and S. Yoseva, “Development of Integrated Organic Agricultural Agribusiness at D’jamuran Pekanbaru Student Business,” ABDIMAS Universitas Muhammadiyah Tasikmalaya, vol. 4, Jan. 2022, doi: https://doi.org/10.35568/abdimas.v4i2.1513.
T. M. T. LE et al., “Using cassava waste of the cassava starch processing as food for raising African Nightcrawler (Eudrilus eugeniae) to obtain vermicomposting and earthworm biomass,” Journal of Vietnamese Environment, vol. 12, no. 2, pp. 169–176, Nov. 2020, doi: 10.13141/jve.vol12.no2.pp169-176.
N. Stasenko, E. Chernova, D. G. Shadrin, G. V Ovchinnikov, I. Krivolapov, and M. Pukalchik, “Deep Learning for improving the storage process: Accurate and automatic segmentation of spoiled areas on apples,” 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1–6, 2021, [Online]. Available: https://api.semanticscholar.org/CorpusID:235748556
E. J. Sadgrove, G. Falzon, D. Miron, and D. W. Lamb, “The segmented colour feature extreme learning machine: Applications in agricultural robotics,” Agronomy, vol. 11, no. 11, Nov. 2021, doi: 10.3390/agronomy11112290.
A. F. Leite et al., “Artificial intelligence-driven novel tool for tooth detection and segmentation on panoramic radiographs,” Clin Oral Investig, vol. 25, no. 4, pp. 2257–2267, Apr. 2021, doi: 10.1007/s00784-020-03544-6.
Y. Luo et al., “Detection of Agricultural Pests Based on YOLO,” in Journal of Physics: Conference Series, Institute of Physics, 2023. doi: 10.1088/1742-6596/2560/1/012013.
I. Ahmad et al., “Deep Learning Based Detector YOLOv5 for Identifying Insect Pests,” Applied Sciences (Switzerland), vol. 12, no. 19, Oct. 2022, doi: 10.3390/app121910167.
S. Dong, J. Zhang, F. Wang, and X. Wang, “YOLO-pest: a real-time multi-class crop pest detection model,” in International Conference on Computer Application and Information Security, SPIE-Intl Soc Optical Eng, May 2022, p. 41. doi: 10.1117/12.2637467.
A. Morbekar, A. Parihar, and R. Jadhav, “Crop Disease Detection Using YOLO,” in International Conference for Emerging Technology (INCET), IEEE, Jun. 2020. doi: 10.1109/INCET49848.2020.9153986.
C. Wen et al., “Pest-YOLO: A model for large-scale multi-class dense and tiny pest detection and counting,” Front Plant Sci, vol. 13, Oct. 2022, doi: 10.3389/fpls.2022.973985.
A. Marin and I. E. Radoi, “Image-based Fruit Recognition and Classification,” 2022 21st RoEduNet Conference: Networking in Education and Research (RoEduNet), pp. 1–4, 2022, [Online]. Available: https://api.semanticscholar.org/CorpusID:253047423
L. K. R. Chairma, B. Praveena, G. Sahaana, J. J. Nithya, T. Gnanasekaran, and M. Hashim, “Yolo for Detecting Plant Diseases,” 2023 Third International Conference on Artificial Intelligence and Smart Energy (ICAIS), pp. 1029–1034, 2023, [Online]. Available: https://api.semanticscholar.org/CorpusID:257792406
R. Suguna, V. K. C. N. S, S. Deepa, and A. M. S., “Apple and Tomato Leaves Disease Detection using Emperor Penguins Optimizer based CNN,” 2023 9th International Conference on Advanced Computing and Communication Systems (ICACCS), vol. 1, pp. 1803–1808, 2023, [Online]. Available: https://api.semanticscholar.org/CorpusID:258510809
D. Y, K. Ramalingam, P. Ramani, and R. Mohan Deepak, “Machine Learning in the Detection of Oral Lesions With Clinical Intraoral Images,” Cureus, Aug. 2023, doi: 10.7759/cureus.44018.
P. Kakani and S. Vyas, “Automated Catalog Generation using Deep Learning,” International Research Journal of Modernization in Engineering Technology and Science, Aug. 2023, doi: 10.56726/irjmets44010.
A. S. Nurhikam, W. P. Agung, S. Rohman, and I. M. Saputra, “KLASIFIKASI TANAMAN OBAT BERDASARKAN CITRA DAUN MENGGUNAKAN BACKPROPAGATION NEURAL NETWORKS,” JIKO (Jurnal Informatika dan Komputer), vol. 8, no. 1, p. 1, Feb. 2024, doi: 10.26798/jiko.v8i1.945.
P. Sengupta, A. Mehta, and P. S. Rana, “Enhancing Performance of Deep Learning Models with a Novel Data Augmentation Approach,” 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), pp. 1–7, 2023, [Online]. Available: https://api.semanticscholar.org/CorpusID:265407195
Ms. K. Nanthini, Dr. D. Sivabalaselvamani, Ms. K. Chitra, Mr. P. Gokul, Mr. S. KavinKumar, and Mr. S. Kishore, “A Survey on Data Augmentation Techniques,” 2023 7th International Conference on Computing Methodologies and Communication (ICCMC), pp. 913–920, 2023, [Online]. Available: https://api.semanticscholar.org/CorpusID:257959880
Y. Wang, G. Huang, S. Song, X. Pan, Y. Xia, and C. Wu, “Regularizing Deep Networks With Semantic Data Augmentation,” IEEE Trans Pattern Anal Mach Intell, vol. 44, pp. 3733–3748, 2020, [Online]. Available: https://api.semanticscholar.org/CorpusID:220665675
I. Akbar, M. Faisal, and T. Chamidy, “Multi-Label Classification of Indonesian Qur’an Translation using Long Short-Term Memory Model,” Computer Network, Computing, Electronics, and Control Journal, vol. 4, no. 3, pp. 119–128, 2019, [Online]. Available: https://kinetik.umm.ac.id/index.php/kinetik/article/view/1901
J. Zhang, J. Zhang, K. Zhou, Y. Zhang, H. Chen, and X. Yan, “An Improved YOLOv5-Based Underwater Object-Detection Framework,” Sensors (Basel), vol. 23, 2023, [Online]. Available: https://api.semanticscholar.org/CorpusID:257943960
L. Shen, B. Lang, and Z. Song, “DS-YOLOv8-Based Object Detection Method for Remote Sensing Images,” IEEE Access, vol. 11, pp. 125122–125137, 2023, [Online]. Available: https://api.semanticscholar.org/CorpusID:265091454
M. Ma and H. Pang, “SP-YOLOv8s: An Improved YOLOv8s Model for Remote Sensing Image Tiny Object Detection,” Applied Sciences (Switzerland), vol. 13, no. 14, Jul. 2023, doi: 10.3390/app13148161.
K. Liang, W. Zhang, F. Li, Z. Jiang, and D. Zhang, “Improved YOLOv7 for Small and Overlapping Objects Detection,” 2023 IEEE 6th International Conference on Pattern Recognition and Artificial Intelligence (PRAI), pp. 153–157, 2023, [Online]. Available: https://api.semanticscholar.org/CorpusID:265877090
Z. Tian, J. Huang, Y. Yang, and W. Nie, “KCFS-YOLOv5: A High-Precision Detection Method for Object Detection in Aerial Remote Sensing Images,” Applied Sciences (Switzerland), vol. 13, no. 1, Jan. 2023, doi: 10.3390/app13010649.
J. Liang, R. Kong, R. Ma, J. Zhang, and X. Bian, “Aluminum Surface Defect Detection Algorithm Based on Improved YOLOv5,” Adv Theory Simul, vol. 7, 2023, [Online]. Available: https://api.semanticscholar.org/CorpusID:266294408
F. Nurdiyansyah et al., “PENERAPAN CONVOLUTIONAL NEURAL NETWORK UNTUK DETEKSI KUALITAS TELUR AYAM RAS BERDASARKAN WARNA CANGKANG,” 2024.
A. Rofiqul Muslikh, I. Akbar, D. Rosal Ignatius Moses Setiadi, and H. Md Mehedul Islam, “Multi-label Classification of Indonesian Al-Quran Translation based CNN, BiLSTM, and FastText,” 2023. [Online]. Available: https://quran.kemenag.go.id.
M. Otani, R. Togashi, Y. Nakashima, E. Rahtu, J. Heikkila, and S. Satoh, “Optimal Correction Cost for Object Detection Evaluation,” 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 21075–21083, 2022, [Online]. Available: https://api.semanticscholar.org/CorpusID:247763091
B. Cheng, R. B. Girshick, P. Doll’ar, A. C. Berg, and A. Kirillov, “Boundary IoU: Improving Object-Centric Image Segmentation Evaluation,” 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15329–15337, 2021, [Online]. Available: https://api.semanticscholar.org/CorpusID:232417671
DOI: http://dx.doi.org/10.26798/jiko.v9i1.1779
Article Metrics
Abstract view : 0 timesPDF (Bahasa Indonesia) - 0 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Firman Nurdiyansyah, Ismail Akbar, Lionardi Ursaputra