Peningkatan Performa Prediksi Survival Pasien Gagal Jantung Menggunakan Stacking Ensemble Learning
Abstract
Prediksi kelangsungan hidup pasien gagal jantung merupakan aspek penting dalam mendukung pengambilan keputusan medis secara dini dan tepat. Penelitian ini bertujuan untuk meningkatkan akurasi prediksi kelangsungan hidup pasien gagal jantung dengan menerapkan metode Stacking Ensemble Learning yang menggabungkan tiga base learners, yaitu Decision Tree, Naive Bayes, dan K-Nearest Neighbor, serta menggunakan Support Vector Machine sebagai meta-learner. Dataset yang digunakan adalah Heart Failure Clinical Records dari UCI Machine Learning Repository yang telah melalui proses pra-pemrosesan berupa standardisasi numerik dan pembagian data menggunakan stratified sampling dengan rasio 80:20. Eksperimen dilakukan menggunakan validasi silang (5-fold cross-validation) dan tuning hyperparameter pada meta-learner menggunakan GridSearchCV untuk menemukan kombinasi terbaik dari parameter C dan gamma. Hasil evaluasi menunjukkan bahwa model stacking mampu mencapai akurasi sebesar 98,7% dan F1-score 0,9791, mengungguli semua model tunggal. Keberhasilan ini menunjukkan bahwa strategi penggabungan beberapa model ringan mampu meningkatkan kinerja sistem prediktif secara signifikan, tanpa menambah kompleksitas yang berlebihan. Oleh karena itu, pendekatan ini sangat potensial untuk diterapkan pada sistem pendukung keputusan klinis berbasis data, khususnya dalam konteks prediksi penyakit kronis.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
National Health Service (UK), "Heart failure," NHS, 2023. [Online]. Available: https://www.nhs.uk/conditions/heart-failure/.
J. Feng, Y. Zhang, and J. Zhang, "Epidemiology and Burden of Heart Failure in Asia," JACC: Asia, vol. 4, no. 4, pp. 249–264, Apr. 2024. doi: 10.1016/j.jacasi.2024.01.013.
A. R. Pratama et al., “Literature Review The Impact of Machine Learning in Modern Industries," Nian Tana Sikka: Jurnal Ilmiah Mahasiswa, vol. 3, no. 1, pp. 177–182, Jan. 2025. doi: 10.59603/niantanasikka.v3i1.680.
A. Rajkomar, J. Dean, and I. Kohane, "Machine Learning in Medicine," New England Journal of Medicine, vol. 380, no. 14, pp. 1347–1358, Apr. 2019. doi: 10.1056/NEJMra1814259.
S. Wang, Y. Huang, Y. Zhou, and H. Wang, "Ensemble learning: A survey and empirical study," Neurocomputing, vol. 469, pp. 10–29, 2022. doi: 10.1016/j.neucom.2021.10.088.
M. I. H. Siddiqui et al., “Accelerated and accurate cervical cancer diagnosis using a novel stacking ensemble method with explainable AI,” Informatics in Medicine Unlocked, vol. 56, p. 101657, 2025, doi: 10.1016/j.imu.2025.101657.
R. Kumar, A. Chandla, A. Bhavsar, and V. Dutt, “PRAK-ExtraTree: Interpretable One-Level Stacking Ensemble for Ayurvedic Personality Classification from Psychometric Measures,” ResearchGate, Jun. 2025. [Online]. Available: https://www.researchgate.net/publication/392324531
M. D. Fathima et al., "OptiStack classifier: optimized stacking framework with ensemble feature engineering," Inflammation Research, 2025. doi: 10.1007/s00011-025-02039-y.
S. Cui et al., "A stacking-based ensemble learning method for earthquake casualty prediction," Applied Soft Computing, vol. 101, p. 107038, Mar. 2021. doi: 10.1016/j.asoc.2020.107038.
A. Ghasemieh et al., "A Stacking Ensemble Learner for Predicting Emergency Readmission of Heart-Disease Patients," in Proc. IEEE Int. Conf. Health Informatics, 2023. doi: 10.1109/ICIEM59344.2023.9976542.
W. Yang et al., "Comparative Analysis of ML Algorithms for CKD Risk Prediction," IEEE Access, vol. 12, pp. 45321–45333, 2024. doi: 10.1109/ACCESS.2024.3356789.
D. Shen et al., "Multiple Complications and 5-Year Mortality Risk in Hepatitis B Cirrhosis," BMC Infectious Diseases, vol. 25, no. 1, p. 187, 2025. doi: 10.1186/s12879-025-10566-6.
S. Barua, A. Begum, and M. M. Islam, "An interpretable decision tree-based approach for early prediction of cardiovascular disease," Health Information Science and Systems, vol. 11, no. 1, pp. 1–10, 2023. doi: 10.1007/s13755-023-00208-5.
RR. Archana et al., "Performance Evaluation of Cardiovascular Prediction Using ML Algorithms," in Proc. IEEE Int. Conf. Data Science, 2024. doi: 10.1109/ICDS54862.2024.10808860.
A. Velu, "Heart Failure Prediction - Clinical Records," Kaggle, 2023. [Online]. Available: https://www.kaggle.com/datasets/aadarshvelu/heart-failure-prediction-clinical-records.
S. Tabassum et al., “A Machine Learning-Based Framework for Heart Disease Diagnosis Using a Comprehensive Patient Cohort,” Comput. Mater. Contin., vol. 84, no. 1, pp. 1253–1278, 2025. doi: 10.32604/cmc.2025.065423.
"Heart Failure Clinical Records," UCI Machine Learning Repository, 2020. doi: 10.24432/C5Z89R. [Online]. Available: https://archive.ics.uci.edu/dataset/519/heart+failure+clinical+records
S. Mali and K. Veeramani, “Heart Attack Prediction Using Ensemble Learning,” 2024 International Conference on Signal Processing, VLSI Design & Communication Systems (SVC), 2024, pp. 1–6, doi: 10.1109/IConSCEPT61884.2024.10627780.
M. S. Khan, S. Anwar, and M. M. Hassan, “A comprehensive review on data preprocessing techniques in machine learning,” IEEE Access, vol. 9, pp. 123926–123951, 2021. doi: 10.1109/ACCESS.2021.3109810.
R. Kohavi, “A study of cross-validation and bootstrap for accuracy estimation and model selection,” in Proc. 14th Int. Joint Conf. Artif. Intell., 1995, pp. 1137–1143.
H. Lee, M. Park, and S. Kim, “Data scaling impact on medical ML models: A comparative study,” Journal of Biomedical Informatics, vol. 130, p. 104086, 2022. doi: 10.1016/j.jbi.2022.104086.
L. Wang et al., “Feature scaling and normalization in predictive modeling of chronic disease,” BMC Medical Informatics and Decision Making, vol. 21, p. 189, 2021. doi: 10.1186/s12911-021-01557-8.
F. M. Alkoot and J. Kittler, "Experimental evaluation of expert fusion strategies," Pattern Recognition Letters, vol. 22, no. 5, pp. 543–553, 2021. doi: 10.1016/j.patrec.2020.12.008.
S. Mohamed and M. S. Darweesh, "Comparative Study of Heart Disease Classification Based on Traditional and Ensemble Models," in Proc. IEEE Int. Conf. Artificial Intelligence and Computer Vision (AICV), 2024. doi: 10.1109/AICV57452.2024.10950066.
DOI: http://dx.doi.org/10.26798/jiko.v9i3.2126
Article Metrics
Abstract view : 0 timesPDF (Bahasa Indonesia) - 0 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Faiza Rulla Salwa, Mega Novita, Ramadhan Renaldy